|
Zapiski Nauchnykh Seminarov POMI, 1997, Volume 245, Pages 207–215
(Mi znsl541)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Integrable equations for the partition function of the six vertex model
A. G. Izergina, E. Karjalainenb, N. A. Kitaninca a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b The Helsinki Institute of Physics, University of Helsinki
c Saint-Petersburg State University
Abstract:
The partition function of the six vertex model with the domain wall boundary condition is considered in the homogeneous and inhomogeneous cases. The determinant representation allows to show that the partition function is a solution of the Toda equation in the homogeneous case and solution of the Hirota equation in the inhomogeneous case.
Received: 01.03.1996
Citation:
A. G. Izergin, E. Karjalainen, N. A. Kitanin, “Integrable equations for the partition function of the six vertex model”, Questions of quantum field theory and statistical physics. Part 14, Zap. Nauchn. Sem. POMI, 245, POMI, St. Petersburg, 1997, 207–215; J. Math. Sci. (New York), 100:2 (2000), 2141–2146
Linking options:
https://www.mathnet.ru/eng/znsl541 https://www.mathnet.ru/eng/znsl/v245/p207
|
Statistics & downloads: |
Abstract page: | 186 | Full-text PDF : | 65 |
|