Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 245, Pages 207–215 (Mi znsl541)  

This article is cited in 5 scientific papers (total in 5 papers)

Integrable equations for the partition function of the six vertex model

A. G. Izergina, E. Karjalainenb, N. A. Kitaninca

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b The Helsinki Institute of Physics, University of Helsinki
c Saint-Petersburg State University
Full-text PDF (155 kB) Citations (5)
Abstract: The partition function of the six vertex model with the domain wall boundary condition is considered in the homogeneous and inhomogeneous cases. The determinant representation allows to show that the partition function is a solution of the Toda equation in the homogeneous case and solution of the Hirota equation in the inhomogeneous case.
Received: 01.03.1996
English version:
Journal of Mathematical Sciences (New York), 2000, Volume 100, Issue 2, Pages 2141–2146
DOI: https://doi.org/10.1007/BF02675734
Bibliographic databases:
UDC: 530.145, 517.9
Language: Russian
Citation: A. G. Izergin, E. Karjalainen, N. A. Kitanin, “Integrable equations for the partition function of the six vertex model”, Questions of quantum field theory and statistical physics. Part 14, Zap. Nauchn. Sem. POMI, 245, POMI, St. Petersburg, 1997, 207–215; J. Math. Sci. (New York), 100:2 (2000), 2141–2146
Citation in format AMSBIB
\Bibitem{IzeKarKit97}
\by A.~G.~Izergin, E.~Karjalainen, N.~A.~Kitanin
\paper Integrable equations for the partition function of the six vertex model
\inbook Questions of quantum field theory and statistical physics. Part~14
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 245
\pages 207--215
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl541}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1627788}
\zmath{https://zbmath.org/?q=an:0978.82033}
\transl
\jour J. Math. Sci. (New York)
\yr 2000
\vol 100
\issue 2
\pages 2141--2146
\crossref{https://doi.org/10.1007/BF02675734}
Linking options:
  • https://www.mathnet.ru/eng/znsl541
  • https://www.mathnet.ru/eng/znsl/v245/p207
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:190
    Full-text PDF :65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024