|
Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 159, Pages 156–175
(Mi znsl5404)
|
|
|
|
Nonlinear boundary value problems for second order systems with one-sided growth constraints of the right side with respect to the first derivatives
M. N. Yakovlev
Abstract:
For system of integrodifferential equation
$u_i^{\prime\prime}+Q_i(t)u^\prime_i+R_i(t)u_i=f_i(t,u_1,\dots,u_n,u_1^\prime,\dots,u_n^\prime,\int_0^1k_i(t,s,u_1(s),\dots,u_n(s))ds)$ $(i=1,\dots,n)$
we establish existence theorems for the solutions of the problem with boundary conditions
$a_iu_i(0)-b_iu_i^\prime(0)=q_i\varphi_i(u_1(0),\dots,u_n(0),u_1(1),\dots,u_n(1),\int_0^1\ell_i(s,u_1(s),\dots,u_n(s))ds)$;
$ c_iu_i(1)+d_iu_1^\prime(1)=h_i\Psi_i(u_1(0),\dots,u_n(0),u_1(1),\dots,u_n(1),\int_0^1M_i(s,u_1(s),\dots,u_n(s))ds)$ $(i=1,\dots,n)$.
Citation:
M. N. Yakovlev, “Nonlinear boundary value problems for second order systems with one-sided growth constraints of the right side with respect to the first derivatives”, Computational methods and algorithms. Part 8, Zap. Nauchn. Sem. LOMI, 159, "Nauka", Leningrad. Otdel., Leningrad, 1987, 156–175
Linking options:
https://www.mathnet.ru/eng/znsl5404 https://www.mathnet.ru/eng/znsl/v159/p156
|
Statistics & downloads: |
Abstract page: | 78 | Full-text PDF : | 41 |
|