Loading [MathJax]/jax/output/SVG/config.js
Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 158, Pages 32–38 (Mi znsl5372)  

Local limit theorems for functionals in the conditional invariance principle

P. Breier
Abstract: We prove the strong convergence of distributions of a large class of functionals of random polygonal paths constructed from independent, identically distributed variables.
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: P. Breier, “Local limit theorems for functionals in the conditional invariance principle”, Problems of the theory of probability distributions. Part X, Zap. Nauchn. Sem. LOMI, 158, "Nauka", Leningrad. Otdel., Leningrad, 1987, 32–38
Citation in format AMSBIB
\Bibitem{Bre87}
\by P.~Breier
\paper Local limit theorems for functionals in the conditional invariance principle
\inbook Problems of the theory of probability distributions. Part~X
\serial Zap. Nauchn. Sem. LOMI
\yr 1987
\vol 158
\pages 32--38
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5372}
\zmath{https://zbmath.org/?q=an:0637.60042}
Linking options:
  • https://www.mathnet.ru/eng/znsl5372
  • https://www.mathnet.ru/eng/znsl/v158/p32
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:73
    Full-text PDF :29
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025