Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 148, Pages 42–51 (Mi znsl5356)  

Asymptotic integration of some class of weakly nonlinear Hamilton systems

S. A. Vakulenko
Abstract: A method of asymptotic integration of some class of $\infty$-dimensional Hamilton equations is described. The method enables to obtain the solution with desirable precision.
Bibliographic databases:
Document Type: Article
UDC: 517.946
Language: Russian
Citation: S. A. Vakulenko, “Asymptotic integration of some class of weakly nonlinear Hamilton systems”, Mathematical problems in the theory of wave propagation. Part 15, Zap. Nauchn. Sem. LOMI, 148, "Nauka", Leningrad. Otdel., Leningrad, 1985, 42–51
Citation in format AMSBIB
\Bibitem{Vak85}
\by S.~A.~Vakulenko
\paper Asymptotic integration of some class of weakly nonlinear Hamilton systems
\inbook Mathematical problems in the theory of wave propagation. Part~15
\serial Zap. Nauchn. Sem. LOMI
\yr 1985
\vol 148
\pages 42--51
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5356}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=833750}
\zmath{https://zbmath.org/?q=an:0595.58021}
Linking options:
  • https://www.mathnet.ru/eng/znsl5356
  • https://www.mathnet.ru/eng/znsl/v148/p42
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:86
    Full-text PDF :41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024