|
Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 147, Pages 196–198
(Mi znsl5351)
|
|
|
|
Perturbation of the self-adjoint operator by the subordinated symmetric operator.
S. A. Yakubov
Abstract:
The following variant of the Rellich's theorem is proved.
Let $A$, $B$ be the operators in some Hilbert space, $A=A^\ast$, $B\subset B^\ast$ and $D(B)\supset D(A)$. Let us suppose that, with some
$\gamma>-1$,
$(Bu,u)\geq\gamma(Au,u)$, $\forall u\in D(A)$.
Then the operator $A+B$ is self-adjoint on the domain $D(A)$.
Citation:
S. A. Yakubov, “Perturbation of the self-adjoint operator by the subordinated symmetric operator.”, Boundary-value problems of mathematical physics and related problems of function theory. Part 17, Zap. Nauchn. Sem. LOMI, 147, "Nauka", Leningrad. Otdel., Leningrad, 1985, 196–198
Linking options:
https://www.mathnet.ru/eng/znsl5351 https://www.mathnet.ru/eng/znsl/v147/p196
|
Statistics & downloads: |
Abstract page: | 92 | Full-text PDF : | 36 |
|