Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 146, Pages 92–101 (Mi znsl5328)  

On estimates for the solutions to the Dirichlet problem for the Laplacian in exterior domains

P. Maremonti, V. A. Solonnikov
Abstract: Let $u(x)$ be the solution of the exterior Dirichlet problem for the equation $\Delta u=f$ vanishing at the infinity. It is shown that the coercive estimate $\| D^2u\|_{Lp)}\leq c\| f\|_{L_p}$ holds for $p<n/2$ In the case $p\geq n/2$ this estimate is established for solutions of the exterior Dirichlet problem that do not vanish at the infinity but may tend to a certain constant or even blow up as a linear function (for $p>n$). Bibl. – 2.
Пусть $u$ – решение уравнения $\Delta u=f$ с финитной функцией $f$ по внешней области $\Omega\subset\mathbf{R}^u$ и с условиями $u|_{\partial\Omega}=0$, $u\to0$ при $|x|\to\infty$. Показано, что коэрцитивная оценка $\|D^2u\|_{L_p(\Omega)}\leq c\|f\|$ справедлива лишь при $p<n/2$. При $p\geq n/2$ она имеет место для решения внешней задачи Дирихле, которая не исчезает на бесконечности, а может стремиться к постоянной или даже к линейной (при $p>n$) функции. Библ. – 2 назв.
Bibliographic databases:
Document Type: Article
UDC: 517.956.225
Language: Russian
Citation: P. Maremonti, V. A. Solonnikov, “On estimates for the solutions to the Dirichlet problem for the Laplacian in exterior domains”, Differential geometry, Lie groups and mechanics. Part VII, Zap. Nauchn. Sem. LOMI, 146, "Nauka", Leningrad. Otdel., Leningrad, 1985, 92–101
Citation in format AMSBIB
\Bibitem{MarSol85}
\by P.~Maremonti, V.~A.~Solonnikov
\paper On estimates for the solutions to the Dirichlet problem for the Laplacian in exterior domains
\inbook Differential geometry, Lie groups and mechanics. Part~VII
\serial Zap. Nauchn. Sem. LOMI
\yr 1985
\vol 146
\pages 92--101
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5328}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=836550}
\zmath{https://zbmath.org/?q=an:0605.35021}
Linking options:
  • https://www.mathnet.ru/eng/znsl5328
  • https://www.mathnet.ru/eng/znsl/v146/p92
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:211
    Full-text PDF :76
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024