|
Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 145, Pages 164–172
(Mi znsl5321)
|
|
|
|
On the theory of Maxwell fluids. III
A. P. Oskolkov
Abstract:
She classical local solvability of the periodic boundary-value
problem and Cauchy problem for the system
$$
\frac{\partial\Delta\Psi}{\partial t}+\frac{\partial}{\partial x_2}(\Psi_{x_1}\Delta\Psi)-\frac{\partial}{\partial x_1}(\Psi_{x_2}\Delta\Psi)-\Delta^2\omega=F, \Psi=\alpha\frac{\partial\omega}{\partial t}+\beta\omega+\int^t_0S(t-\tau)\omega(\tau)d\tau, \alpha>0,
$$
is proved. The system describes two-dimensional motions of Maxwell
fluids of order $L=1,2,\dots$ . Bibl. – 6.
Citation:
A. P. Oskolkov, “On the theory of Maxwell fluids. III”, Questions of quantum field theory and statistical physics. Part 5, Zap. Nauchn. Sem. LOMI, 145, "Nauka", Leningrad. Otdel., Leningrad, 1985, 164–172
Linking options:
https://www.mathnet.ru/eng/znsl5321 https://www.mathnet.ru/eng/znsl/v145/p164
|
Statistics & downloads: |
Abstract page: | 158 | Full-text PDF : | 67 |
|