Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 144, Pages 155–166 (Mi znsl5309)  

On Fourier coefficients for Siegel cusp forms of degree $n$

O. M. Fomenko
Abstract: Let $F(Z)$ be a cusp form of integral weight $k$ relative to the Siegel modular group $Sp_n(\mathbb{Z})$ and let $f(N)$ be its Fourier coefficient with index $N$. Making use of Rankin's convolution, one proves the estimate
$$ f(N)=O\Bigl(|N|^{\frac k2-\frac17\delta(n)}\Bigr), \qquad (1) $$
where
$$ \delta(n)=\frac{n+1}{(n+1)\Bigl(zn+\frac{1+(-1)^n}{2}\Bigr)+1} $$
Previously, for $n\geq2$ one has known Raghavan's estimate
$$ f(N)=O(|N|^{\frac k2}) $$
In the case $n=2$, Kitaoka has obtained a result, sharper than (1), namely:
$$ f(N)=O\Bigl(|N|^{\frac k2-\frac14+\varepsilon}\Bigr) \qquad (2) $$
At the end of the paper one investigates specially the case $n=2$. It is shown that in some cases the result (2) can be improved to, apparently, unimprovable estimates if one assumes some analogues of the Petersson conjecture. These results lead to a conjecture regarding the optimal estimates of $f(N)$, $n=2$.
Bibliographic databases:
Document Type: Article
UDC: 517.863
Language: Russian
Citation: O. M. Fomenko, “On Fourier coefficients for Siegel cusp forms of degree $n$”, Analytical theory of numbers and theory of functions. Part 6, Zap. Nauchn. Sem. LOMI, 144, "Nauka", Leningrad. Otdel., Leningrad, 1985, 155–166
Citation in format AMSBIB
\Bibitem{Fom85}
\by O.~M.~Fomenko
\paper On Fourier coefficients for Siegel cusp forms of degree~$n$
\inbook Analytical theory of numbers and theory of functions. Part~6
\serial Zap. Nauchn. Sem. LOMI
\yr 1985
\vol 144
\pages 155--166
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5309}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=787423}
\zmath{https://zbmath.org/?q=an:0568.10016}
Linking options:
  • https://www.mathnet.ru/eng/znsl5309
  • https://www.mathnet.ru/eng/znsl/v144/p155
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:138
    Full-text PDF :37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024