|
Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 144, Pages 155–166
(Mi znsl5309)
|
|
|
|
On Fourier coefficients for Siegel cusp forms of degree $n$
O. M. Fomenko
Abstract:
Let $F(Z)$ be a cusp form of integral weight $k$ relative to the Siegel modular group $Sp_n(\mathbb{Z})$ and let $f(N)$ be its Fourier coefficient with index $N$. Making use of Rankin's convolution, one proves the estimate
$$
f(N)=O\Bigl(|N|^{\frac k2-\frac17\delta(n)}\Bigr), \qquad (1)
$$
where
$$
\delta(n)=\frac{n+1}{(n+1)\Bigl(zn+\frac{1+(-1)^n}{2}\Bigr)+1}
$$
Previously, for $n\geq2$ one has known Raghavan's estimate
$$
f(N)=O(|N|^{\frac k2})
$$
In the case $n=2$, Kitaoka has obtained a result, sharper than (1), namely:
$$
f(N)=O\Bigl(|N|^{\frac k2-\frac14+\varepsilon}\Bigr) \qquad (2)
$$
At the end of the paper one investigates specially the case $n=2$. It is shown that in some cases the result (2) can be improved to, apparently, unimprovable estimates if one assumes some analogues of the Petersson conjecture. These results lead to a conjecture regarding the optimal estimates of $f(N)$, $n=2$.
Citation:
O. M. Fomenko, “On Fourier coefficients for Siegel cusp forms of degree $n$”, Analytical theory of numbers and theory of functions. Part 6, Zap. Nauchn. Sem. LOMI, 144, "Nauka", Leningrad. Otdel., Leningrad, 1985, 155–166
Linking options:
https://www.mathnet.ru/eng/znsl5309 https://www.mathnet.ru/eng/znsl/v144/p155
|
Statistics & downloads: |
Abstract page: | 138 | Full-text PDF : | 37 |
|