Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 144, Pages 146–148 (Mi znsl5307)  

On the harmonic measure of continua of a fixed diameter

A. Yu. Solynin
Abstract: Let $\mathcal{E}$ be the family of all continua $E$ in $\bar{U}\setminus\{0\}$, where $U=\{|z|<1\}$, let $U(E)$ be the connected component of $U\setminus E$ containing the point $z=0$, $\omega_E(z_0)=\omega(z_0,E,U(E))$ be the harmonic measure of $E$ relative to the domain $U(E)$ at the point $z_0\in U(E)$. In the paper one answers affirmatively a question raised by B. Rodkin [K.F. Barth, D.A. Branna, and W.K. Hayman, "Research problems in complx analysis,’’ Bull. London Math. Soc.,l6, No. 5, 490–517, 1984]. Namely, one proves that in the family $\mathcal{E}(d_0)$ of continua $E\in\mathcal{E}$, satisfying the condition $\operatorname{diam}E=d_0$, $\quad0<d_0\leq2$, one has the inequality
$$ \omega_E(0)\geq\frac1\pi\arcsin d_0/2, $$
one indicates all the cases for which equality prevails.
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: A. Yu. Solynin, “On the harmonic measure of continua of a fixed diameter”, Analytical theory of numbers and theory of functions. Part 6, Zap. Nauchn. Sem. LOMI, 144, "Nauka", Leningrad. Otdel., Leningrad, 1985, 146–148
Citation in format AMSBIB
\Bibitem{Sol85}
\by A.~Yu.~Solynin
\paper On the harmonic measure of continua of a fixed diameter
\inbook Analytical theory of numbers and theory of functions. Part~6
\serial Zap. Nauchn. Sem. LOMI
\yr 1985
\vol 144
\pages 146--148
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5307}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=787421}
\zmath{https://zbmath.org/?q=an:0614.30025}
Linking options:
  • https://www.mathnet.ru/eng/znsl5307
  • https://www.mathnet.ru/eng/znsl/v144/p146
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:101
    Full-text PDF :34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024