Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 144, Pages 136–145 (Mi znsl5306)  

This article is cited in 3 scientific papers (total in 3 papers)

A parametrized modulus problem for a family of several classes of curves

A. Yu. Solynin
Full-text PDF (573 kB) Citations (3)
Abstract: Let , where $\bar{ \mathbb{C} }^\prime=\bar{ \mathbb{C} }\setminus\{A\cup B\}$ and $A=\{a_1,\dots,a_n\}$ и $B=\{b_1,\dots,b_m\}$ are systems of distinguished points, and let $H$ be a family of homotopic classes $H_i$, $i=1,\dots,j+m$, of closed Jordan curves in $\bar{ \mathbb{C} }$, where the classes $H_{j+\ell}$, $\ell=1,\dots,m$, consist of curves that are homotopic to a point curve in $b_\ell$. Let $\alpha=\{\alpha_1,\dots,\alpha_{j+m}\}$ be a system of positive numbers. By $P=P(\alpha,A,B)$ we denote the extremal-metric problem for the family $H$ and the numbers $\alpha$: for the modulus $M=M(\alpha,A,B)$ of this problem we have the equality
$$ M=\sum^{j+m}_{i=1}\alpha^2_i M(D_i^\ast), $$
Where $D^\ast=\{D_1^\ast,\dots,D^\ast_{j+m}\}$ is a system of domains realizinga maximum for the indicated sum in the family of all systems $D=\{D_1,\dots,D_{j+m}\}$ of domains, associated with the family $H$ (by $M(D_1)$) we denote the modulus of the domain $D_i$, associated with the class $H_i$). In the present paper we investigate the manner in which $M=M(\alpha,A,B)$ and the moduli $M(D_i^\ast)$ depend on the parameters $\alpha_i$, $a_k$, $b_\ell$; moreover, we consider the conditions under which some of the doubly connected domains $D_i^\ast$, $i=1,\dots,j$, from the system $D^\ast$ turn out to be degenerate (Theorems 1–3). In particular, one obtains an expression for the gradient of the function $M$, as function of the parameter $a=a_k$ (Theorem 4). One gives some applications of the obtained results (Theorem 5).
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: A. Yu. Solynin, “A parametrized modulus problem for a family of several classes of curves”, Analytical theory of numbers and theory of functions. Part 6, Zap. Nauchn. Sem. LOMI, 144, "Nauka", Leningrad. Otdel., Leningrad, 1985, 136–145
Citation in format AMSBIB
\Bibitem{Sol85}
\by A.~Yu.~Solynin
\paper A parametrized modulus problem for a family of several classes of curves
\inbook Analytical theory of numbers and theory of functions. Part~6
\serial Zap. Nauchn. Sem. LOMI
\yr 1985
\vol 144
\pages 136--145
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5306}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=787420}
\zmath{https://zbmath.org/?q=an:0597.32021}
Linking options:
  • https://www.mathnet.ru/eng/znsl5306
  • https://www.mathnet.ru/eng/znsl/v144/p136
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:121
    Full-text PDF :58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024