|
Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 144, Pages 83–93
(Mi znsl5302)
|
|
|
|
A class of functions that are univalent in an annulus
E. G. Emel'yanov
Abstract:
In the class $F_1$ of functions $f(\zeta)$, regular and univalent in the annulus $K=\{\rho<|\zeta|<1\}$ and satisfying the conditions $|f(\zeta)|<1$ and $f(\zeta)\ne0$ for $\zeta\in K$, $|f(\zeta)|=1$, $|\zeta|=1$, for $f(1)=1$, one finds the set of the values $D(A)=\{f(A):f\in K\}$ for an arbitrary fixed point $A\in K$. One makes use of the method of variations and certain facts from the theory of the moduli of families of curves.
Citation:
E. G. Emel'yanov, “A class of functions that are univalent in an annulus”, Analytical theory of numbers and theory of functions. Part 6, Zap. Nauchn. Sem. LOMI, 144, "Nauka", Leningrad. Otdel., Leningrad, 1985, 83–93
Linking options:
https://www.mathnet.ru/eng/znsl5302 https://www.mathnet.ru/eng/znsl/v144/p83
|
Statistics & downloads: |
Abstract page: | 94 | Full-text PDF : | 43 |
|