Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 144, Pages 72–82 (Mi znsl5301)  

This article is cited in 5 scientific papers (total in 5 papers)

Some properties of the moduli of families of curves

E. G. Emel'yanov
Full-text PDF (514 kB) Citations (5)
Abstract: Let $A=\{a_1,\dots,a_n\}$ and $B=\{b_1,\dots,b_m\}$ be systems of distinct points in $\bar{ \mathbb{C} }$, let $H$ be a family of homotopic classes $H_i$, $i=1,\dots,j+m$, of closed Jordan curves on $\bar{ \mathbb{C} }^\prime=\bar{ \mathbb{C} }\setminus\{A\cup B\}$, where the classes $H_{j+\ell}$, $\ell=1,\dots,m$, consist of curves that are homotopic to a point curve in $b_\ell$. Let $\alpha=\{\alpha_1,\dots,\alpha_{j+m}\}$ be a system of positive numbers and let $M$ be the modulus of the extremal-metric problem for the family $H$ and the system $\alpha$. In this paper we investigate the dependence of the modulus $M=M(\alpha,A,B)$ on the parameters $\alpha_1$ and on the disposition of the points $a_k$ and $b_\ell$. One shows that $M$ is a smooth function of the indicated arguments and one obtains expressions for the derivatives $\frac{\partial}{\partial\alpha_i}M$, $\frac{\partial}{\partial\bar a_k}M$, and $\frac{\partial}{\partial b_\ell}M$. One gives some applications of these results.
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: E. G. Emel'yanov, “Some properties of the moduli of families of curves”, Analytical theory of numbers and theory of functions. Part 6, Zap. Nauchn. Sem. LOMI, 144, "Nauka", Leningrad. Otdel., Leningrad, 1985, 72–82
Citation in format AMSBIB
\Bibitem{Eme85}
\by E.~G.~Emel'yanov
\paper Some properties of the moduli of families of curves
\inbook Analytical theory of numbers and theory of functions. Part~6
\serial Zap. Nauchn. Sem. LOMI
\yr 1985
\vol 144
\pages 72--82
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5301}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=787415}
\zmath{https://zbmath.org/?q=an:0577.30018}
Linking options:
  • https://www.mathnet.ru/eng/znsl5301
  • https://www.mathnet.ru/eng/znsl/v144/p72
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:109
    Full-text PDF :43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024