Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2007, Volume 349, Pages 30–52 (Mi znsl53)  

This article is cited in 11 scientific papers (total in 11 papers)

Basic reductions for the description of normal subgroups

N. A. Vavilov, A. K. Stavrova

Saint-Petersburg State University
References:
Abstract: Classification of subgroups in a Chevalley group $G(\Phi,R)$ over a commutative ring $R$, normalised by the elementary subgroup $E(\Phi,R)$, is well known. However, for exceptional groups one cannot find in the available literature neither the parabolic reduction, nor the level reduction. This is due to the fact that the Abe–Suzuki–Vaserstein proof relied on localisation and reduction modulo Jacobson radical. Recently for the groups of types $\operatorname{E}_6$, $\operatorname{E}_7$ and $\operatorname{F}_4$ the first-named author, M. Gavrilovich and S. Nikolenko proposed an even more straightforward geometric approach to the proof of structure theorems, similar to the one used for classical cases. In the present work we give still simpler proofs of two key auxiliary results of the geometric approach. First, we carry through the parabolic reduction in full generality: for all parabolic subgroups of all Chevalley groups of rank $\ge 2$. At that we succeeded in avoiding any reference to the structure of internal Chevalley modules, or explicit calculations of the centralisers of unipotent elements. Second, we prove the level reduction, also for the most general situation of double levels, which arise for multiply-laced root systems.
Received: 10.06.2007
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 151, Issue 3, Pages 2949–2960
DOI: https://doi.org/10.1007/s10958-008-9019-1
Bibliographic databases:
UDC: 513.6
Language: Russian
Citation: N. A. Vavilov, A. K. Stavrova, “Basic reductions for the description of normal subgroups”, Problems in the theory of representations of algebras and groups. Part 16, Zap. Nauchn. Sem. POMI, 349, POMI, St. Petersburg, 2007, 30–52; J. Math. Sci. (N. Y.), 151:3 (2008), 2949–2960
Citation in format AMSBIB
\Bibitem{VavSta07}
\by N.~A.~Vavilov, A.~K.~Stavrova
\paper Basic reductions for the description of normal subgroups
\inbook Problems in the theory of representations of algebras and groups. Part~16
\serial Zap. Nauchn. Sem. POMI
\yr 2007
\vol 349
\pages 30--52
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl53}
\elib{https://elibrary.ru/item.asp?id=13077202}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2008
\vol 151
\issue 3
\pages 2949--2960
\crossref{https://doi.org/10.1007/s10958-008-9019-1}
\elib{https://elibrary.ru/item.asp?id=13585712}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-49249125938}
Linking options:
  • https://www.mathnet.ru/eng/znsl53
  • https://www.mathnet.ru/eng/znsl/v349/p30
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:456
    Full-text PDF :122
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024