Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1985, Volume 144, Pages 38–45 (Mi znsl5297)  

Application of spherical functions to a problem of the theory of quadratic forms

E. P. Golubeva, O. M. Fomenko
Abstract: The problem regarding the number of integral points on multidimensional ellipsoids is investigated with the aid of modular forms. In the paper we consider the simplest special case of the following problem: one considers a multidimensional sphere and as a domain on it one selects a "cap.’’ The precise result is formulated in the following manner: let $r_\ell(n)$ be the number of the representations of $n$ by a sum of $\ell$ squares, $0<A<1$; then for even $\ell\geq 6$ we have
$$ \sum_{-A\leq\frac{x}{\sqrt{n}}\leq A}r_{\ell-1}(n-x^2)=r_\ell(n)\left(K_\ell(A)+O\left(n^{-\frac{\ell-2}{2(\ell+1)}+\varepsilon}\right)\right); $$
for $\ell=4$ we have
$$ \sum_{-A\leq\frac{x}{\sqrt{n}}\leq A}r_3(n-x^2)=r_4(n)\left(K_4(A)+O\left(n_1^{-\frac{1}{5}+\varepsilon}\right)\right), $$
where $n=2^\alpha n_1$, $2^\alpha\,\|\,n$; the expression for $K_\ell(A)$, $\ell\geq4$, is given in the paper. It is also shown that one can refine somewhat the results on the distribution of integral points on multidimensional ellipsoids, obtained by A.V. Malyshev by the circular method, remaining within the framework of the same methods.
Bibliographic databases:
Document Type: Article
UDC: 511.466+517.863
Language: Russian
Citation: E. P. Golubeva, O. M. Fomenko, “Application of spherical functions to a problem of the theory of quadratic forms”, Analytical theory of numbers and theory of functions. Part 6, Zap. Nauchn. Sem. LOMI, 144, "Nauka", Leningrad. Otdel., Leningrad, 1985, 38–45
Citation in format AMSBIB
\Bibitem{GolFom85}
\by E.~P.~Golubeva, O.~M.~Fomenko
\paper Application of spherical functions to a problem of the theory of quadratic forms
\inbook Analytical theory of numbers and theory of functions. Part~6
\serial Zap. Nauchn. Sem. LOMI
\yr 1985
\vol 144
\pages 38--45
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5297}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=787411}
\zmath{https://zbmath.org/?q=an:0568.10014}
Linking options:
  • https://www.mathnet.ru/eng/znsl5297
  • https://www.mathnet.ru/eng/znsl/v144/p38
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:165
    Full-text PDF :55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024