Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 406, Pages 12–30 (Mi znsl5288)  

This article is cited in 9 scientific papers (total in 9 papers)

Upper bound on the number of edges of an almost planar bipartite graph

D. V. Karpov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (293 kB) Citations (9)
References:
Abstract: Let $G$ be a bipartite graph without loops and multiple edges on $v\ge4$ vertices, which can be drawn on the plane such that any edge intersects at most one other edge. We prove that such graph has at most $3v-8$ edges for even $v\ne6$ and at most $3v-9$ edges for odd $v$ and $v=6$. For all $v\ge4$ examples showing that these bounds are tight are constructed.
In the end of the paper, we discuss a question about drawings of complete bipartite graphs on the plane such that any edge intersects at most one other edge.
Key words and phrases: topological graphs, planar graphs, bipartite graphs.
Received: 03.09.2012
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 196, Issue 6, Pages 737–746
DOI: https://doi.org/10.1007/s10958-014-1690-9
Bibliographic databases:
Document Type: Article
UDC: 519.173.2
Language: Russian
Citation: D. V. Karpov, “Upper bound on the number of edges of an almost planar bipartite graph”, Combinatorics and graph theory. Part V, Zap. Nauchn. Sem. POMI, 406, POMI, St. Petersburg, 2012, 12–30; J. Math. Sci. (N. Y.), 196:6 (2014), 737–746
Citation in format AMSBIB
\Bibitem{Kar12}
\by D.~V.~Karpov
\paper Upper bound on the number of edges of an almost planar bipartite graph
\inbook Combinatorics and graph theory. Part~V
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 406
\pages 12--30
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5288}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3032174}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 196
\issue 6
\pages 737--746
\crossref{https://doi.org/10.1007/s10958-014-1690-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953430133}
Linking options:
  • https://www.mathnet.ru/eng/znsl5288
  • https://www.mathnet.ru/eng/znsl/v406/p12
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :87
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024