Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 403, Pages 110–117 (Mi znsl5252)  

This article is cited in 1 scientific paper (total in 1 paper)

On realizations of representations of the infinite symmetric group

N. I. Nessonov

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar'kov, Ukraine
Full-text PDF (214 kB) Citations (1)
References:
Abstract: Denote by $\mathbb N$ the set of positive integers $\{1,2,\dots\}$. Let $\mathfrak S_\mathbb X$ stand for the group of all finite permutations of the set $\mathbb X=-\mathbb N\cup\mathbb N$. Consider the subgroups
$$ \mathfrak S_\mathbb N=\{s\in\mathfrak S_\mathbb X\colon s(-k)=-k\text{ for all }k\in\mathbb N\} $$
and
$$\mathfrak D=\{s\in\mathfrak S_\mathbb X\colon -s(k)=s(-k)\text{ and }s(\mathbb N)=\mathbb N\}. $$
Given a spherical representation $\pi$ of the pair $(\mathfrak S_\mathbb N\cdot\mathfrak S_{-\mathbb N},\mathfrak D)$, we construct a spherical representation $\Pi$ of the pair $(\mathfrak S_\mathbb X,\mathfrak D)$ such that the restriction of $\Pi$ to the group $\mathfrak S_\mathbb N\cdot\mathfrak S_{-\mathbb N}$ coincides with $\pi$.
Key words and phrases: infinite symmetric group, spherical representation, factor representation, Thoma parameters.
Received: 17.10.2012
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 190, Issue 3, Pages 468–471
DOI: https://doi.org/10.1007/s10958-013-1263-3
Bibliographic databases:
Document Type: Article
UDC: 517.986.4
Language: Russian
Citation: N. I. Nessonov, “On realizations of representations of the infinite symmetric group”, Representation theory, dynamical systems, combinatorial methods. Part XXI, Zap. Nauchn. Sem. POMI, 403, POMI, St. Petersburg, 2012, 110–117; J. Math. Sci. (N. Y.), 190:3 (2013), 468–471
Citation in format AMSBIB
\Bibitem{Nes12}
\by N.~I.~Nessonov
\paper On realizations of representations of the infinite symmetric group
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXI
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 403
\pages 110--117
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5252}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3029584}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 190
\issue 3
\pages 468--471
\crossref{https://doi.org/10.1007/s10958-013-1263-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880597743}
Linking options:
  • https://www.mathnet.ru/eng/znsl5252
  • https://www.mathnet.ru/eng/znsl/v403/p110
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:178
    Full-text PDF :54
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024