|
Zapiski Nauchnykh Seminarov POMI, 2012, Volume 403, Pages 110–117
(Mi znsl5252)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On realizations of representations of the infinite symmetric group
N. I. Nessonov B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar'kov, Ukraine
Abstract:
Denote by $\mathbb N$ the set of positive integers $\{1,2,\dots\}$. Let $\mathfrak S_\mathbb X$ stand for the group of all finite permutations of the set $\mathbb X=-\mathbb N\cup\mathbb N$. Consider the subgroups $$
\mathfrak S_\mathbb N=\{s\in\mathfrak S_\mathbb X\colon s(-k)=-k\text{ for all }k\in\mathbb N\}
$$
and
$$\mathfrak D=\{s\in\mathfrak S_\mathbb X\colon -s(k)=s(-k)\text{ and }s(\mathbb N)=\mathbb N\}.
$$
Given a spherical representation $\pi$ of the pair $(\mathfrak S_\mathbb N\cdot\mathfrak S_{-\mathbb N},\mathfrak D)$, we construct a spherical representation $\Pi$ of the pair $(\mathfrak S_\mathbb X,\mathfrak D)$ such that the restriction of $\Pi$ to the group $\mathfrak S_\mathbb N\cdot\mathfrak S_{-\mathbb N}$ coincides with $\pi$.
Key words and phrases:
infinite symmetric group, spherical representation, factor representation, Thoma parameters.
Received: 17.10.2012
Citation:
N. I. Nessonov, “On realizations of representations of the infinite symmetric group”, Representation theory, dynamical systems, combinatorial methods. Part XXI, Zap. Nauchn. Sem. POMI, 403, POMI, St. Petersburg, 2012, 110–117; J. Math. Sci. (N. Y.), 190:3 (2013), 468–471
Linking options:
https://www.mathnet.ru/eng/znsl5252 https://www.mathnet.ru/eng/znsl/v403/p110
|
Statistics & downloads: |
Abstract page: | 178 | Full-text PDF : | 54 | References: | 38 |
|