|
Zapiski Nauchnykh Seminarov POMI, 1997, Volume 244, Pages 271–284
(Mi znsl525)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
The estimation of a function being observed with a stationary error
V. N. Soleva, L. Gerville-Reacheb a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Université Victor Segalen Bordeaux 2
Abstract:
We suppose that we observe a process $y(t)$ when $t\in [-T,T]$,
$$
y(t)\;=\;s(t)\;+\;x(t) \qquad (t \in [-T,T]),
$$
where $s$ is an unknown function (which we must estimate), $x$ is a stationary noise. We compare the accuracy of the least-squares estimator $\bold s^*$ with the accuracy of the best linear unbiased estimator $\bold s^{\star}$.
Received: 18.12.1997
Citation:
V. N. Solev, L. Gerville-Reache, “The estimation of a function being observed with a stationary error”, Probability and statistics. Part 2, Zap. Nauchn. Sem. POMI, 244, POMI, St. Petersburg, 1997, 271–284; J. Math. Sci. (New York), 99:2 (2000), 1182–1190
Linking options:
https://www.mathnet.ru/eng/znsl525 https://www.mathnet.ru/eng/znsl/v244/p271
|
Statistics & downloads: |
Abstract page: | 152 | Full-text PDF : | 65 |
|