Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 403, Pages 35–57 (Mi znsl5247)  

This article is cited in 6 scientific papers (total in 7 papers)

On classification of measurable functions of several variables

A. M. Vershik

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (293 kB) Citations (7)
References:
Abstract: We define a normal form (called the canonical image) of an arbitrary measurable function of several variables with respect to a natural group of transformations, describe a new complete system of its invariants (the system of joint distributions), and relate these notions to matrix distributions, i.e., another invariant of measurable functions, which was found earlier and is a random matrix.
Key words and phrases: classification of functions, matrix distribution, canonical form, joint distributions.
Received: 10.10.2012
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 190, Issue 3, Pages 427–437
DOI: https://doi.org/10.1007/s10958-013-1258-0
Bibliographic databases:
Document Type: Article
UDC: 517.987
Language: Russian
Citation: A. M. Vershik, “On classification of measurable functions of several variables”, Representation theory, dynamical systems, combinatorial methods. Part XXI, Zap. Nauchn. Sem. POMI, 403, POMI, St. Petersburg, 2012, 35–57; J. Math. Sci. (N. Y.), 190:3 (2013), 427–437
Citation in format AMSBIB
\Bibitem{Ver12}
\by A.~M.~Vershik
\paper On classification of measurable functions of several variables
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXI
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 403
\pages 35--57
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5247}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3029579}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 190
\issue 3
\pages 427--437
\crossref{https://doi.org/10.1007/s10958-013-1258-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880605064}
Linking options:
  • https://www.mathnet.ru/eng/znsl5247
  • https://www.mathnet.ru/eng/znsl/v403/p35
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :82
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024