Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 402, Pages 170–182 (Mi znsl5243)  

On $k$-abelian avoidability

M. Huova, J. Karhumäki

Department of Mathematics and TUCS, University of Turku, Turku, Finland
References:
Abstract: We consider a recently defined notion of $k$-abelian equivalence of words by giving some basic results and concentrating on avoidability problems. This equivalence relation counts the numbers of factors of length $k$ for a fixed natural number $k$. We ask for the size of the smallest alphabet for which $k$-abelian squares and cubes can be avoided, respectively. For $2$-abelian squares this is four – as in the case of abelian words, while for $2$-abelian cubes we have only strong evidence that the size is two – as it is in the case of words. In addition, we point out a few properties of morphisms supporting the view that it might be difficult to find solutions to our questions by simply iterating a morphism.
Key words and phrases: combinatorics on words, $k$-abelian equivalence, avoidability.
Received: 21.05.2012
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 192, Issue 3, Pages 352–358
DOI: https://doi.org/10.1007/s10958-013-1400-z
Bibliographic databases:
Document Type: Article
UDC: 519.11.14
Language: English
Citation: M. Huova, J. Karhumäki, “On $k$-abelian avoidability”, Combinatorics and graph theory. Part IV, RuFiDiM'11, Zap. Nauchn. Sem. POMI, 402, POMI, St. Petersburg, 2012, 170–182; J. Math. Sci. (N. Y.), 192:3 (2013), 352–358
Citation in format AMSBIB
\Bibitem{HuoKar12}
\by M.~Huova, J.~Karhum\"aki
\paper On $k$-abelian avoidability
\inbook Combinatorics and graph theory. Part~IV
\bookinfo RuFiDiM'11
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 402
\pages 170--182
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5243}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2981984}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 192
\issue 3
\pages 352--358
\crossref{https://doi.org/10.1007/s10958-013-1400-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884981462}
Linking options:
  • https://www.mathnet.ru/eng/znsl5243
  • https://www.mathnet.ru/eng/znsl/v402/p170
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:135
    Full-text PDF :33
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024