Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 402, Pages 108–147 (Mi znsl5241)  

This article is cited in 7 scientific papers (total in 7 papers)

Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments

I. N. Ponomarenko

St. Petersburg Department of Steklov Mathematical Institute RAS, St. Petersburg, Russia
Full-text PDF (430 kB) Citations (7)
References:
Abstract: It is known that for any permutation group $G$ of odd order there exists a subset of the permuted set whose stabilizer in $G$ is trivial, and if $G$ is primitive, then there also exists a base of size at most 3. These results are generalized to the coherent configuration of $G$, that is in this case schurian and antisymmetric. This enables us to construct a polynomial-time algorithm for recognizing and isomorphism testing of schurian tournaments (i.e., arc colored tournaments the coherent configurations of which are schurian).
Key words and phrases: coherent configuration, linear group, wreath product, the Weisfeiler–Leman algorithm.
Received: 07.05.2012
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 192, Issue 3, Pages 316–338
DOI: https://doi.org/10.1007/s10958-013-1398-2
Bibliographic databases:
Document Type: Article
UDC: 512.542.7+519.14+510.52
Language: English
Citation: I. N. Ponomarenko, “Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments”, Combinatorics and graph theory. Part IV, RuFiDiM'11, Zap. Nauchn. Sem. POMI, 402, POMI, St. Petersburg, 2012, 108–147; J. Math. Sci. (N. Y.), 192:3 (2013), 316–338
Citation in format AMSBIB
\Bibitem{Pon12}
\by I.~N.~Ponomarenko
\paper Bases of schurian antisymmetric coherent configurations and isomorphism test for schurian tournaments
\inbook Combinatorics and graph theory. Part~IV
\bookinfo RuFiDiM'11
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 402
\pages 108--147
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5241}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2981982}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 192
\issue 3
\pages 316--338
\crossref{https://doi.org/10.1007/s10958-013-1398-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884987763}
Linking options:
  • https://www.mathnet.ru/eng/znsl5241
  • https://www.mathnet.ru/eng/znsl/v402/p108
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:249
    Full-text PDF :67
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024