|
Zapiski Nauchnykh Seminarov POMI, 2012, Volume 401, Pages 103–121
(Mi znsl5229)
|
|
|
|
Free multiple interpolation
A. M. Kotochigov Saint-Petersburg State Electrotechnical University, Saint-Petersburg, Russia
Abstract:
Our aim in this article is to construct a bounded linear operator that solves the problem of multiple interpolation (interpolation with derivatives). It is proved that such an operator exists for nontangential and sparse interpolation sets if we consider interpolation by analytic functions satisfying the following condition: $|f^{(m)}(z_1)-f^{(m)}(z_2)|\leq\omega(|z_1-z_2|)$.
Key words and phrases:
analytic function, modulus of continuity, multiple interpolation.
Received: 17.07.2012
Citation:
A. M. Kotochigov, “Free multiple interpolation”, Investigations on linear operators and function theory. Part 40, Zap. Nauchn. Sem. POMI, 401, POMI, St. Petersburg, 2012, 103–121; J. Math. Sci. (N. Y.), 194:6 (2013), 656–666
Linking options:
https://www.mathnet.ru/eng/znsl5229 https://www.mathnet.ru/eng/znsl/v401/p103
|
Statistics & downloads: |
Abstract page: | 311 | Full-text PDF : | 96 | References: | 66 |
|