Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 401, Pages 93–102 (Mi znsl5228)  

On regulariziers of unbounded linear operators in Banach spaces

V. M. Kaplitskiiab

a Southern Federal University, Rostov-on-Don, Russia
b South Mathematical Institute of VSC RAS, Vladikavkaz, Russia
References:
Abstract: Regulariziers of densely defined unbounded linear operators in Banach spaces and their applications to spectral theory are considered. Necessary and sufficient conditions in terms of regularizier properties for an unbounded operator $T$ to be discrete are obtained. In the case when $T$ has a selfadjoint regularizier in some Schatten–von Neumann ideals, asymptotic properties of the eigenvalues are investigated, namely, it is shown that the eigenvalues of $T$ asymptotically belong to a some angle in the complex plane.
Key words and phrases: regularizier, canonical regularizier, Shatten–von-Neimann ideal, discretness of spectrum.
Received: 16.07.2012
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 194, Issue 6, Pages 651–655
DOI: https://doi.org/10.1007/s10958-013-1554-8
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: V. M. Kaplitskii, “On regulariziers of unbounded linear operators in Banach spaces”, Investigations on linear operators and function theory. Part 40, Zap. Nauchn. Sem. POMI, 401, POMI, St. Petersburg, 2012, 93–102; J. Math. Sci. (N. Y.), 194:6 (2013), 651–655
Citation in format AMSBIB
\Bibitem{Kap12}
\by V.~M.~Kaplitskii
\paper On regulariziers of unbounded linear operators in Banach spaces
\inbook Investigations on linear operators and function theory. Part~40
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 401
\pages 93--102
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5228}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2981969}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 194
\issue 6
\pages 651--655
\crossref{https://doi.org/10.1007/s10958-013-1554-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898942670}
Linking options:
  • https://www.mathnet.ru/eng/znsl5228
  • https://www.mathnet.ru/eng/znsl/v401/p93
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:425
    Full-text PDF :99
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024