|
Zapiski Nauchnykh Seminarov POMI, 2012, Volume 401, Pages 71–81
(Mi znsl5226)
|
|
|
|
On control subspaces of minimal dimension
M. F. Gamal' St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
The quantity "$\operatorname{disc}$" for a (bounded linear) operator was introduced by N. K. Nikol'skii and V. I. Vasjunin, namely,
$$
\operatorname{disc}T=\sup_{E\in\mathcal R(T)}\min\{\dim E'\colon E'\subset E,\ E'\in\mathcal R(T)\},
$$
where $\mathcal R(T)$ is the family of all finite dimensional reproducing subspaces for an operator $T$. We give sufficient conditions on operators $T$ under which $\operatorname{disc}T=\infty$. In particular, we show that there exists an operator $T$ with $\operatorname{disc}T=\infty$ and such that $T$ can be represented in the form $T=T_1\oplus T_2$ with $\operatorname{disc}T_1=\operatorname{disc}T_2=1$.
Key words and phrases:
normal operator, invariant subspaces.
Received: 08.06.2012
Citation:
M. F. Gamal', “On control subspaces of minimal dimension”, Investigations on linear operators and function theory. Part 40, Zap. Nauchn. Sem. POMI, 401, POMI, St. Petersburg, 2012, 71–81; J. Math. Sci. (N. Y.), 194:6 (2013), 639–644
Linking options:
https://www.mathnet.ru/eng/znsl5226 https://www.mathnet.ru/eng/znsl/v401/p71
|
Statistics & downloads: |
Abstract page: | 162 | Full-text PDF : | 49 | References: | 24 |
|