Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 401, Pages 53–70 (Mi znsl5225)  

This article is cited in 1 scientific paper (total in 1 paper)

Sharp estimates of best approximations by deviations of Weierstrass-type integrals

O. L. Vinogradov

Saint-Petersburg State University, Saint-Petersburg, Russia
Full-text PDF (289 kB) Citations (1)
References:
Abstract: We establish the estimates
$$ A_\sigma(f)_P\le KP(f-f*W), $$
where $W$ is a kernel of special type summable on $\mathbb R$ and $A_\sigma(f)_P$ is the best approximation (with respect to a seminorm $P$) of a function $f$ by entire functions of exponential type not greater than $\sigma$. For the uniform and the integral norm we find the least possible constant $K$. The estimates are obtained by linear methods of approximation.
Key words and phrases: best approximation, sharp constants, convolution, completely monotone functions.
Received: 23.05.2012
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 194, Issue 6, Pages 628–638
DOI: https://doi.org/10.1007/s10958-013-1551-y
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: O. L. Vinogradov, “Sharp estimates of best approximations by deviations of Weierstrass-type integrals”, Investigations on linear operators and function theory. Part 40, Zap. Nauchn. Sem. POMI, 401, POMI, St. Petersburg, 2012, 53–70; J. Math. Sci. (N. Y.), 194:6 (2013), 628–638
Citation in format AMSBIB
\Bibitem{Vin12}
\by O.~L.~Vinogradov
\paper Sharp estimates of best approximations by deviations of Weierstrass-type integrals
\inbook Investigations on linear operators and function theory. Part~40
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 401
\pages 53--70
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5225}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2981966}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 194
\issue 6
\pages 628--638
\crossref{https://doi.org/10.1007/s10958-013-1551-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898941939}
Linking options:
  • https://www.mathnet.ru/eng/znsl5225
  • https://www.mathnet.ru/eng/znsl/v401/p53
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:261
    Full-text PDF :71
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024