Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 401, Pages 5–52 (Mi znsl5224)  

This article is cited in 6 scientific papers (total in 6 papers)

Operator Lipschitz functions and linear fractional transformations

A. B. Aleksandrov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (481 kB) Citations (6)
References:
Abstract: It is known that the function $t^2\sin\frac1t$ is an operator Lipschitz function on the real line $\mathbb R$. We prove that the function $\sin$ can be replaced by any operator Lipschitz function $f$ with $f(0)=0$. In other words, for every operator Lipschitz function $f$ the function $t^2 f(\frac1t)$ is also operator Lipschitz if $f(0)=0$. The function $f$ can be defined on an arbitrary closed subset of the complex plane $\mathbb C$. Moreover, the linear fractional transformation $\frac1t$ can be replaced by every linear fractional transformation $\varphi$. In this case, we assert that the function $\dfrac{f\circ\varphi}{\varphi'}$ is operator Lipschitz for every operator Lipschitz function $f$ provided $f(\varphi(\infty))=0$.
Key words and phrases: operator Lipschitz functions.
Received: 23.04.2012
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 194, Issue 6, Pages 603–627
DOI: https://doi.org/10.1007/s10958-013-1550-z
Bibliographic databases:
Document Type: Article
UDC: 517.5+517.98      
Language: Russian
Citation: A. B. Aleksandrov, “Operator Lipschitz functions and linear fractional transformations”, Investigations on linear operators and function theory. Part 40, Zap. Nauchn. Sem. POMI, 401, POMI, St. Petersburg, 2012, 5–52; J. Math. Sci. (N. Y.), 194:6 (2013), 603–627
Citation in format AMSBIB
\Bibitem{Ale12}
\by A.~B.~Aleksandrov
\paper Operator Lipschitz functions and linear fractional transformations
\inbook Investigations on linear operators and function theory. Part~40
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 401
\pages 5--52
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5224}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2981965}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 194
\issue 6
\pages 603--627
\crossref{https://doi.org/10.1007/s10958-013-1550-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899028258}
Linking options:
  • https://www.mathnet.ru/eng/znsl5224
  • https://www.mathnet.ru/eng/znsl/v401/p5
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:456
    Full-text PDF :115
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024