Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 244, Pages 227–237 (Mi znsl522)  

This article is cited in 3 scientific papers (total in 3 papers)

A generalization of Kendall's tau and asymptotic efficiency of the corresponding test of independence

Ya. Yu. Nikitina, N. A. Stepanovab

a St. Petersburg State University, Department of Mathematics and Mechanics
b Saint-Petersburg State University
Full-text PDF (183 kB) Citations (3)
Abstract: We calculate Bahadur local efficiency if the test of independence based on a generalization of the Kendall's rank correlation coefficient proposed by Kochar and Gupta in 1987. It is shown that this test is locally efficient for those alternatives to the independence hypothesis which are described by the Woodworth dependence function.
Received: 01.12.1996
English version:
Journal of Mathematical Sciences (New York), 2000, Volume 99, Issue 2, Pages 1154–1160
DOI: https://doi.org/10.1007/BF02673638
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: Ya. Yu. Nikitin, N. A. Stepanova, “A generalization of Kendall's tau and asymptotic efficiency of the corresponding test of independence”, Probability and statistics. Part 2, Zap. Nauchn. Sem. POMI, 244, POMI, St. Petersburg, 1997, 227–237; J. Math. Sci. (New York), 99:2 (2000), 1154–1160
Citation in format AMSBIB
\Bibitem{NikSte97}
\by Ya.~Yu.~Nikitin, N.~A.~Stepanova
\paper A generalization of Kendall's tau and asymptotic efficiency of the corresponding test of independence
\inbook Probability and statistics. Part~2
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 244
\pages 227--237
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl522}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1700392}
\zmath{https://zbmath.org/?q=an:1163.62333}
\transl
\jour J. Math. Sci. (New York)
\yr 2000
\vol 99
\issue 2
\pages 1154--1160
\crossref{https://doi.org/10.1007/BF02673638}
Linking options:
  • https://www.mathnet.ru/eng/znsl522
  • https://www.mathnet.ru/eng/znsl/v244/p227
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:226
    Full-text PDF :80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024