Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 399, Pages 5–14 (Mi znsl5218)  

This article is cited in 8 scientific papers (total in 8 papers)

A new upper bound for $(n,3)$-MAX-SAT

I. A. Bliznets

St. Petersburg University of the Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (199 kB) Citations (8)
References:
Abstract: It is still not known whether the satisfiability problem (SAT), and hence maximum satisfiability problem (MAX-SAT), can be solved in time $\operatorname{poly}(|F|)c^n$, for $c<2$, where $c$ is a constant, $n$ is the number of variables, and $F$ is an input formula. However, such bounds are known for some special cases of these problems where the clause length, the maximal number of variable occurrences or the length of the formula is bounded. In this paper, we consider the $(n,3)$-MAX-SAT problem – a special case of MAX-SAT where each variable appears in a formula at most three times. We present a simple algorithm with running time $O^*(2^{n/3})$. As a byproduct we also obtain a polynomially solvable subclass that may be of independent interest.
Key words and phrases: algorithm, maximum satisfiability, satisfiability.
Received: 15.01.2012
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 188, Issue 1, Pages 1–6
DOI: https://doi.org/10.1007/s10958-012-1101-z
Bibliographic databases:
Document Type: Article
UDC: 519.712.2
Language: English
Citation: I. A. Bliznets, “A new upper bound for $(n,3)$-MAX-SAT”, Computational complexity theory. Part X, Zap. Nauchn. Sem. POMI, 399, POMI, St. Petersburg, 2012, 5–14; J. Math. Sci. (N. Y.), 188:1 (2013), 1–6
Citation in format AMSBIB
\Bibitem{Bli12}
\by I.~A.~Bliznets
\paper A new upper bound for $(n,3)$-MAX-SAT
\inbook Computational complexity theory. Part~X
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 399
\pages 5--14
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5218}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2944997}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 188
\issue 1
\pages 1--6
\crossref{https://doi.org/10.1007/s10958-012-1101-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871930916}
Linking options:
  • https://www.mathnet.ru/eng/znsl5218
  • https://www.mathnet.ru/eng/znsl/v399/p5
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:247
    Full-text PDF :82
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024