Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 157, Pages 173–174 (Mi znsl5216)  

Short communications

On Cauchy type integrals in domains with smooth boundary

V. I. Morkunas
Abstract: There exist a Jordan domain $G$ with $C^1$-boundary and a Cauchy integral $f$ in $G$ such that $(f\circ\varphi)\varphi'$ is not a Cauchy integral in the unit disc $\mathbb D$, $\varphi$ being a conformal map of $\mathbb D$ onto $G$.
Bibliographic databases:
Document Type: Article
UDC: 517.537
Language: Russian
Citation: V. I. Morkunas, “On Cauchy type integrals in domains with smooth boundary”, Investigations on linear operators and function theory. Part XVI, Zap. Nauchn. Sem. LOMI, 157, "Nauka", Leningrad. Otdel., Leningrad, 1987, 173–174
Citation in format AMSBIB
\Bibitem{Mor87}
\by V.~I.~Morkunas
\paper On Cauchy type integrals in domains with smooth boundary
\inbook Investigations on linear operators and function theory. Part~XVI
\serial Zap. Nauchn. Sem. LOMI
\yr 1987
\vol 157
\pages 173--174
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5216}
\zmath{https://zbmath.org/?q=an:0634.30036}
Linking options:
  • https://www.mathnet.ru/eng/znsl5216
  • https://www.mathnet.ru/eng/znsl/v157/p173
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:79
    Full-text PDF :40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024