Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 157, Pages 165–172 (Mi znsl5215)  

Short communications

Some analogues of von-Heumann's inequality for $J$-contractions

M. M. Malamud
Abstract: Let $J$ be a self-adjoint operator satisfying $J^2=I$. We prove that for any $J$-contraction $T$ (i. e. $T^*JT-J\leqslant0$) and any inner function $f$ holomorphic on the spectrum of $T$ the function $f(T)$ is a $J$-contraction too. It is also proved that for $J\ne\pm I$ only inner functions $f$ satisfy this property. We consider other analogues of von-Neumann's inequality.
Bibliographic databases:
Document Type: Article
UDC: 517.982.224
Language: Russian
Citation: M. M. Malamud, “Some analogues of von-Heumann's inequality for $J$-contractions”, Investigations on linear operators and function theory. Part XVI, Zap. Nauchn. Sem. LOMI, 157, "Nauka", Leningrad. Otdel., Leningrad, 1987, 165–172
Citation in format AMSBIB
\Bibitem{Mal87}
\by M.~M.~Malamud
\paper Some analogues of von-Heumann's inequality for $J$-contractions
\inbook Investigations on linear operators and function theory. Part~XVI
\serial Zap. Nauchn. Sem. LOMI
\yr 1987
\vol 157
\pages 165--172
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5215}
\zmath{https://zbmath.org/?q=an:0641.47014}
Linking options:
  • https://www.mathnet.ru/eng/znsl5215
  • https://www.mathnet.ru/eng/znsl/v157/p165
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:123
    Full-text PDF :63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024