Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 157, Pages 151–156 (Mi znsl5213)  

Short communications

A convolution metric in the space of measures and $\varepsilon$-isometries on $L_p$

A. L. Koldobskii
Abstract: For $p>0$, $p\ne2,4,6,\dots$ we define the metric $\rho(\mu,\nu)$ on the space of measures $\mu$ on $\mathbb R$ as follows
$$ \rho(\mu,\nu)=\sup_{t\in\mathbb R}|(|x|^p*\mu)(t)-(|x|^p*\nu)(t)|\cdot(1+|t|)^{-p}. $$
The Kantorovich-Rubinshtein metric $A_p(\mu,\nu)$ is defined by
$$ A_p(\mu,\nu)=\inf\{\int_{\mathbb R^2}|x-y|^p\,d\psi(x,y):\pi_1\psi=\mu,\pi_2\psi=\nu\}, $$
$\pi_1, \pi_2$ being the standard projections: $\mathbb R^2\to\mathbb R^1$.
Theorem 1. Let $0<p<\infty$, $p\ne2,4,6,\dots$; $\mu_n, \mu$ be probability measures on $\mathbb R$ with $\int(1+|x|^p)\,d\mu_n$. If $\lim_{n\to\infty}\rho(\mu_n,\mu)=0$ then $\lim_{n\to\infty}A_p(\mu_n,\mu)=0$.
Theorem 3. Let $1\leqslant p<\infty$, $p\ne2,4,6,\dots$, $H$ be a finite dimensional subspace in $L_p([0,1])$. Then there is a continuous function $\tau_H(\varepsilon)$ on $[0,\infty)$ such that $\lim_{\varepsilon\to0}\tau_H(\varepsilon)=0$ and for every linear $\varepsilon$-isometric operator $T\colon H\to L_p([0,1])$ there exists a linear isometry $U\colon H\to L_p([0,1])$ such that $\|T-U\|<\tau_H(\varepsilon)$.
Bibliographic databases:
Document Type: Article
UDC: 517.98 + 519.53
Language: Russian
Citation: A. L. Koldobskii, “A convolution metric in the space of measures and $\varepsilon$-isometries on $L_p$”, Investigations on linear operators and function theory. Part XVI, Zap. Nauchn. Sem. LOMI, 157, "Nauka", Leningrad. Otdel., Leningrad, 1987, 151–156
Citation in format AMSBIB
\Bibitem{Kol87}
\by A.~L.~Koldobskii
\paper A convolution metric in the space of measures and $\varepsilon$-isometries on~$L_p$
\inbook Investigations on linear operators and function theory. Part~XVI
\serial Zap. Nauchn. Sem. LOMI
\yr 1987
\vol 157
\pages 151--156
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5213}
\zmath{https://zbmath.org/?q=an:0635.47031}
Linking options:
  • https://www.mathnet.ru/eng/znsl5213
  • https://www.mathnet.ru/eng/znsl/v157/p151
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024