|
Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 157, Pages 137–145
(Mi znsl5211)
|
|
|
|
Short communications
Traces of functions belonging to Sobolev and Besov spaces and extensions from subsets of Euclidean space
A. B. Gulisashvili
Abstract:
It is proved that the existence of the trace operator $Tr\colon B_1^{n-\alpha}\to L^1_E(\mathcal H_\alpha)$, $0\leqslant\alpha<n$, implies the existence of the bounded extension (nonlinear) $\mathrm {Ext}\colon L^1(\mathcal H_\alpha)\to B_1^{n-\alpha}$, where $\mathcal H_\alpha$ denotes the $\alpha$-dimensional Hausdorff measure in $\mathbb R^n$ and $E$ is a Borel subset of $\mathbb R^n$.
Citation:
A. B. Gulisashvili, “Traces of functions belonging to Sobolev and Besov spaces and extensions from subsets of Euclidean space”, Investigations on linear operators and function theory. Part XVI, Zap. Nauchn. Sem. LOMI, 157, "Nauka", Leningrad. Otdel., Leningrad, 1987, 137–145
Linking options:
https://www.mathnet.ru/eng/znsl5211 https://www.mathnet.ru/eng/znsl/v157/p137
|
Statistics & downloads: |
Abstract page: | 85 | Full-text PDF : | 40 |
|