Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 157, Pages 113–123 (Mi znsl5208)  

Similar models of Toeplitz operators

D. V. Yakubovich
Abstract: We consider Toeplitz operators $T_F$ on Banach spaces $B(\Omega)$ satisfying some natural constraints, where $\Omega$ is a domain bounded by a simple piecewise smooth closed curve $\partial\Omega$. Assume that $F$ is a meromorphic function in a neighbourhood of $\bar\Omega$ and has no poles on $\partial\Omega$. Then $T_F$ is well-defined and bounded on $B(\Omega)$. It is proved that if the winding number of the curve $F|\partial\Omega$ with respect to every point $\lambda\in\mathbb C\setminus F(\partial\Omega)$ is nonnegative (and if some additional assumptions hold), then $T_F$ is similar to the multiplication by a function $\nu$ on some space $B_F(\sigma_*)$ of analytic functions on a Riemann surface $\sigma_*=\sigma_*(T_F)$; moreover, $\nu$ is nothing but the projection of $\sigma_*$ into $\mathbb C$. The surface $\sigma_*$ (which is called the ultraspectrum of $T_F$) and the Banach space $B_F(\sigma_*)$ are calculated explicitly and the equation $\nu(\sigma_*)=\operatorname{int}\sigma(T_F)$ holds.
Bibliographic databases:
Document Type: Article
UDC: 517.984.36
Language: Russian
Citation: D. V. Yakubovich, “Similar models of Toeplitz operators”, Investigations on linear operators and function theory. Part XVI, Zap. Nauchn. Sem. LOMI, 157, "Nauka", Leningrad. Otdel., Leningrad, 1987, 113–123
Citation in format AMSBIB
\Bibitem{Yak87}
\by D.~V.~Yakubovich
\paper Similar models of Toeplitz operators
\inbook Investigations on linear operators and function theory. Part~XVI
\serial Zap. Nauchn. Sem. LOMI
\yr 1987
\vol 157
\pages 113--123
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5208}
\zmath{https://zbmath.org/?q=an:0647.47041}
Linking options:
  • https://www.mathnet.ru/eng/znsl5208
  • https://www.mathnet.ru/eng/znsl/v157/p113
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:97
    Full-text PDF :55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024