Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 157, Pages 103–112 (Mi znsl5207)  

This article is cited in 2 scientific papers (total in 2 papers)

She quantitative version of the Kado theorem

N. A. Shirokov
Full-text PDF (371 kB) Citations (2)
Abstract: The main aim of the paper is to prove the following result.
Theorem. Let $\Gamma$ be a $k$–quasiconformal circle, $L$ a Jordan curve (not necessarily quasiconformal). Suppose that $f$ maps $\operatorname{ext} L$ onto $\operatorname{ext} \Gamma$ quasiconformally and that $f(\infty)=\infty$, $f'(\infty)>0$. Suppose further that there is a horaeomorphism $\chi\colon L\to\Gamma$ such that
$$ |\chi(\zeta)-\zeta|\leqslant\varepsilon,\quad\zeta\in\Gamma,\quad0<\varepsilon\leqslant1. $$
Then there exist numbers $\alpha=\alpha(k)>0$ and $A=A(k)$ such that
$$ |f(\chi(\zeta))-\zeta|\leqslant A\varepsilon^\alpha,\quad\zeta\in\Gamma. $$
Bibliographic databases:
Document Type: Article
UDC: 517.548.2
Language: Russian
Citation: N. A. Shirokov, “She quantitative version of the Kado theorem”, Investigations on linear operators and function theory. Part XVI, Zap. Nauchn. Sem. LOMI, 157, "Nauka", Leningrad. Otdel., Leningrad, 1987, 103–112
Citation in format AMSBIB
\Bibitem{Shi87}
\by N.~A.~Shirokov
\paper She quantitative version of the Kado theorem
\inbook Investigations on linear operators and function theory. Part~XVI
\serial Zap. Nauchn. Sem. LOMI
\yr 1987
\vol 157
\pages 103--112
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5207}
\zmath{https://zbmath.org/?q=an:0641.30007}
Linking options:
  • https://www.mathnet.ru/eng/znsl5207
  • https://www.mathnet.ru/eng/znsl/v157/p103
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:171
    Full-text PDF :47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024