|
Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 157, Pages 103–112
(Mi znsl5207)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
She quantitative version of the Kado theorem
N. A. Shirokov
Abstract:
The main aim of the paper is to prove the following result.
Theorem. Let $\Gamma$ be a $k$–quasiconformal circle, $L$ a Jordan curve (not necessarily quasiconformal). Suppose that $f$ maps $\operatorname{ext} L$ onto $\operatorname{ext} \Gamma$ quasiconformally and that $f(\infty)=\infty$, $f'(\infty)>0$. Suppose further that there is a horaeomorphism $\chi\colon L\to\Gamma$ such that
$$
|\chi(\zeta)-\zeta|\leqslant\varepsilon,\quad\zeta\in\Gamma,\quad0<\varepsilon\leqslant1.
$$
Then there exist numbers $\alpha=\alpha(k)>0$ and $A=A(k)$ such that
$$
|f(\chi(\zeta))-\zeta|\leqslant A\varepsilon^\alpha,\quad\zeta\in\Gamma.
$$
Citation:
N. A. Shirokov, “She quantitative version of the Kado theorem”, Investigations on linear operators and function theory. Part XVI, Zap. Nauchn. Sem. LOMI, 157, "Nauka", Leningrad. Otdel., Leningrad, 1987, 103–112
Linking options:
https://www.mathnet.ru/eng/znsl5207 https://www.mathnet.ru/eng/znsl/v157/p103
|
Statistics & downloads: |
Abstract page: | 171 | Full-text PDF : | 47 |
|