Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 157, Pages 88–102 (Mi znsl5206)  

Cyclic sets for analytic Toeplitz operators

B. M. Solomyak
Abstract: Analytic Toeplitz operators $T_\varphi\colon f\mapsto\varphi f$, $\varphi\in H^\infty$, in the space $H^2$ are considered. In the case of smooth symbol and under some hypotheses of geometric nature on the curve $t\mapsto\varphi(e^{it})$, a full description of cyclic families is obtained. This description is based on the notions of an outer function and pseudocont: lnuation, which are employed to characterize cyclic vectors for the shift operator and its adjoint.
Bibliographic databases:
Document Type: Article
UDC: 517.984.48
Language: Russian
Citation: B. M. Solomyak, “Cyclic sets for analytic Toeplitz operators”, Investigations on linear operators and function theory. Part XVI, Zap. Nauchn. Sem. LOMI, 157, "Nauka", Leningrad. Otdel., Leningrad, 1987, 88–102
Citation in format AMSBIB
\Bibitem{Sol87}
\by B.~M.~Solomyak
\paper Cyclic sets for analytic Toeplitz operators
\inbook Investigations on linear operators and function theory. Part~XVI
\serial Zap. Nauchn. Sem. LOMI
\yr 1987
\vol 157
\pages 88--102
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5206}
\zmath{https://zbmath.org/?q=an:0643.47030}
Linking options:
  • https://www.mathnet.ru/eng/znsl5206
  • https://www.mathnet.ru/eng/znsl/v157/p88
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:125
    Full-text PDF :72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024