Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 157, Pages 70–75 (Mi znsl5204)  

This article is cited in 1 scientific paper (total in 1 paper)

Rational approximation in $L^p$ and Faber transforms

V. V. Peller
Full-text PDF (292 kB) Citations (1)
Abstract: Using the technique of Faber transforms we show that Pekarskii's theorem on rational approximation of functions in $H^p$, $1<p<\infty$, directly implies Petrushev's theorem on rational approximation in $L^p[-1,1]$, $1<p<\infty$, and vice versa. The same technique permits us to obtain similar results for functions analytic in domains with Lipschitz Jordan boundaries.
Document Type: Article
UDC: 517.54
Language: Russian
Citation: V. V. Peller, “Rational approximation in $L^p$ and Faber transforms”, Investigations on linear operators and function theory. Part XVI, Zap. Nauchn. Sem. LOMI, 157, "Nauka", Leningrad. Otdel., Leningrad, 1987, 70–75
Citation in format AMSBIB
\Bibitem{Pel87}
\by V.~V.~Peller
\paper Rational approximation in~$L^p$ and Faber transforms
\inbook Investigations on linear operators and function theory. Part~XVI
\serial Zap. Nauchn. Sem. LOMI
\yr 1987
\vol 157
\pages 70--75
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5204}
Linking options:
  • https://www.mathnet.ru/eng/znsl5204
  • https://www.mathnet.ru/eng/znsl/v157/p70
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:96
    Full-text PDF :42
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024