Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2007, Volume 349, Pages 5–29 (Mi znsl52)  

This article is cited in 6 scientific papers (total in 6 papers)

On subgroups of symplectic group containing a subsystem subgroup

N. A. Vavilov

Saint-Petersburg State University
Full-text PDF (299 kB) Citations (6)
References:
Abstract: Let $\Gamma=\operatorname{GSp}(2l,R)$ be the general symplectic group of rank $l$ over a commutative ring $R$ such, that $2\in R^*$, and $\nu$ be a symmetric equivalence relation on the index set $\{1,\ldots,l,-l,\ldots,1\}$, all of whose classes contain at least 3 elements. In the present paper we prove that if a subgroup $H$ of $\Gamma$ contains the group $E_{\Gamma}(\nu)$ of elementary block diagonal matrices of type $\nu$, then $H$ normalises the subgroup generated by all elementary symplectic transvections $T_{ij}(\xi)\in H$. Combined with the previous results, this completely describes overgroups of subsystem subgroups in this case. Similar results for subgroups of $\operatorname{GL}(n,R)$ were established by Z. I. Borewicz and the author in early 1980-ies, while for $\operatorname{GSp}(2l,R)$ and $\operatorname{GO}(n,R)$ they have been announced by the author in late 1980-ies, but the complete proof for the symplectic case has not been published before.
Received: 20.06.2007
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 151, Issue 3, Pages 2937–2948
DOI: https://doi.org/10.1007/s10958-008-9020-8
Bibliographic databases:
UDC: 513.6
Language: Russian
Citation: N. A. Vavilov, “On subgroups of symplectic group containing a subsystem subgroup”, Problems in the theory of representations of algebras and groups. Part 16, Zap. Nauchn. Sem. POMI, 349, POMI, St. Petersburg, 2007, 5–29; J. Math. Sci. (N. Y.), 151:3 (2008), 2937–2948
Citation in format AMSBIB
\Bibitem{Vav07}
\by N.~A.~Vavilov
\paper On subgroups of symplectic group containing a~subsystem subgroup
\inbook Problems in the theory of representations of algebras and groups. Part~16
\serial Zap. Nauchn. Sem. POMI
\yr 2007
\vol 349
\pages 5--29
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl52}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2742852}
\elib{https://elibrary.ru/item.asp?id=13077201}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2008
\vol 151
\issue 3
\pages 2937--2948
\crossref{https://doi.org/10.1007/s10958-008-9020-8}
\elib{https://elibrary.ru/item.asp?id=13581263}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-49249101527}
Linking options:
  • https://www.mathnet.ru/eng/znsl52
  • https://www.mathnet.ru/eng/znsl/v349/p5
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:382
    Full-text PDF :132
    References:65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024