|
Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 157, Pages 55–69
(Mi znsl5192)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
On the boundary values of analytic operator-valued functions with positive imaginary parts
S. N. Naboko
Abstract:
Let $\mathfrak Y_p$ $(0<p<\infty)$ be the Schatten-von-Heumann class of operators on a Hilbert space. We prove that for $\mathfrak Y_p$-valued $(0<p<1)$ $\mathbb R$-functions the nontangential limits exist a. e. on $\mathbb R$ and belong to $\mathfrak Y_p$. For $p>1$ the “boundary values” can even be unbounded everywhere on $\mathbb R$. Finally, for $p=1$ the nontangential limits on $\mathfrak Y_q$, exist in the norm of $q>1$. However, they belong, in general, only to the symmetric ideal $\mathfrak Y_\Omega$, which is adjoint to Matsaev's class.
Citation:
S. N. Naboko, “On the boundary values of analytic operator-valued functions with positive imaginary parts”, Investigations on linear operators and function theory. Part XVI, Zap. Nauchn. Sem. LOMI, 157, "Nauka", Leningrad. Otdel., Leningrad, 1987, 55–69
Linking options:
https://www.mathnet.ru/eng/znsl5192 https://www.mathnet.ru/eng/znsl/v157/p55
|
Statistics & downloads: |
Abstract page: | 171 | Full-text PDF : | 84 |
|