Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 157, Pages 30–44 (Mi znsl5189)  

On singular parts of contractive analytic operator-functions

Yu. P. Ginzburg, A. A. Tarasenko
Abstract: We consider the class $B_G$ of holomorphic functions in $G\in\mathbb C$ whose values are contractions on a separable Hilbert space. For $T(\cdot)\in B_G$ we prove that if $T(z_0)$ (for some $z_0\in G$) is a weak contraction, its singular part $T^{(s)}(z_0)$ is complete, and the difference $T(z)-T(z_0)$ is not too big (say, finite dimensional) then $T^{(s)}(z_0)$ is complete almost everywhere in $G$. If, in addition, $T(z_0)$ is a completely nonunitary contraction satisfying some smoothness conditions then the spectrum $\sigma_z$ of $T^{(s)}(z_0)$ $(z\in G)$ is a thin set (in nontrivial case):
$$ \int_{\mathbb T}\log\{\inf_{\zeta\in\sigma_z}|t-\zeta|\}\,|dt|>-\infty. $$
The proofs of the results stated are based on a formula obtained in the paper which relates the characteristic functions of the contractions $T(z)$ for different $z$ in $G$.
Bibliographic databases:
Document Type: Article
UDC: 517.548.5
Language: Russian
Citation: Yu. P. Ginzburg, A. A. Tarasenko, “On singular parts of contractive analytic operator-functions”, Investigations on linear operators and function theory. Part XVI, Zap. Nauchn. Sem. LOMI, 157, "Nauka", Leningrad. Otdel., Leningrad, 1987, 30–44
Citation in format AMSBIB
\Bibitem{GinTar87}
\by Yu.~P.~Ginzburg, A.~A.~Tarasenko
\paper On singular parts of contractive analytic operator-functions
\inbook Investigations on linear operators and function theory. Part~XVI
\serial Zap. Nauchn. Sem. LOMI
\yr 1987
\vol 157
\pages 30--44
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5189}
\zmath{https://zbmath.org/?q=an:0638.47012}
Linking options:
  • https://www.mathnet.ru/eng/znsl5189
  • https://www.mathnet.ru/eng/znsl/v157/p30
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:98
    Full-text PDF :43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024