Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 156, Pages 69–72 (Mi znsl5177)  

This article is cited in 1 scientific paper (total in 1 paper)

On a solvability in general on $(0,\infty)$ a main initial boundary-value problem for two-dimentional equations of Oldroyd fluid

N. A. Karazeeva
Full-text PDF (224 kB) Citations (1)
Abstract: For the system
$$\begin{cases} \frac{\partial\bar v}{\partial t}+v_k\frac{\partial\bar v}{\partial x_k}-\mu\Delta\bar v-\mathbb K\Delta\bar v+\operatorname{grad} p=\bar f(x,t),\\ \operatorname{div}\bar v=0,\;\mathbb K\bar v=\int_0^tK(t-\tau)v(\tau)\,d\tau,\;K=\sum c_je^{-\zeta_jt},\;c_j,\zeta_j>0 \end{cases}$$
described two-dimentional motion of Oldroyd liquiditis proved a global solvability for $t\in(0,\infty)$.
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: N. A. Karazeeva, “On a solvability in general on $(0,\infty)$ a main initial boundary-value problem for two-dimentional equations of Oldroyd fluid”, Mathematical problems in the theory of wave propagation. Part 16, Zap. Nauchn. Sem. LOMI, 156, "Nauka", Leningrad. Otdel., Leningrad, 1986, 69–72
Citation in format AMSBIB
\Bibitem{Kar86}
\by N.~A.~Karazeeva
\paper On a~solvability in general on $(0,\infty)$ a~main initial boundary-value problem for two-dimentional equations of Oldroyd fluid
\inbook Mathematical problems in the theory of wave propagation. Part~16
\serial Zap. Nauchn. Sem. LOMI
\yr 1986
\vol 156
\pages 69--72
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5177}
\zmath{https://zbmath.org/?q=an:0614.76005}
Linking options:
  • https://www.mathnet.ru/eng/znsl5177
  • https://www.mathnet.ru/eng/znsl/v156/p69
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:136
    Full-text PDF :40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024