|
Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 156, Pages 69–72
(Mi znsl5177)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On a solvability in general on $(0,\infty)$ a main initial boundary-value problem for two-dimentional equations of Oldroyd fluid
N. A. Karazeeva
Abstract:
For the system
$$\begin{cases}
\frac{\partial\bar v}{\partial t}+v_k\frac{\partial\bar v}{\partial x_k}-\mu\Delta\bar v-\mathbb K\Delta\bar v+\operatorname{grad} p=\bar f(x,t),\\
\operatorname{div}\bar v=0,\;\mathbb K\bar v=\int_0^tK(t-\tau)v(\tau)\,d\tau,\;K=\sum c_je^{-\zeta_jt},\;c_j,\zeta_j>0
\end{cases}$$
described two-dimentional motion of Oldroyd liquiditis proved a global solvability for $t\in(0,\infty)$.
Citation:
N. A. Karazeeva, “On a solvability in general on $(0,\infty)$ a main initial boundary-value problem for two-dimentional equations of Oldroyd fluid”, Mathematical problems in the theory of wave propagation. Part 16, Zap. Nauchn. Sem. LOMI, 156, "Nauka", Leningrad. Otdel., Leningrad, 1986, 69–72
Linking options:
https://www.mathnet.ru/eng/znsl5177 https://www.mathnet.ru/eng/znsl/v156/p69
|
Statistics & downloads: |
Abstract page: | 143 | Full-text PDF : | 40 |
|