|
Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 152, Pages 105–136
(Mi znsl5123)
|
|
|
|
The quasi-classical asymptotics of the scattering cross-section for asymptotically homogeneous potentials
A. V. Sobolev
Abstract:
The total scattering cross-section by a potential $gV(x)$, $x\in\mathbb R^m$, $m\geqslant3$, is considered for'large coupling constants $g$ and .wave numbers $k$. It is supposed that $V(x)\sim\Phi(x/|x|)|x|^{-\alpha}$, $2\alpha>m+1$, as $|x|\to\infty$. It is shown that as $gk^{-1}\to\infty$, $g^{3-\alpha}k^{2(\alpha-2)}\to\infty$ the cross-section asymptotically equals $\theta_\alpha(gk^{-1})^\varkappa$, $\varkappa=(m-1)(\alpha-1)^{-1}$. Here the coefficient $\theta_\alpha$ is determined only by the function $\Phi$ and the number $\alpha$. Under additional assumptions $\Phi>0$, $V>0$ this asymptotics holds in the broader region $gk^{-1}\to\infty$, $gk^{\alpha-2}\geqslant c(gk^{-1})^\delta$, $\delta>0$.
Citation:
A. V. Sobolev, “The quasi-classical asymptotics of the scattering cross-section for asymptotically homogeneous potentials”, Boundary-value problems of mathematical physics and related problems of function theory. Part 18, Zap. Nauchn. Sem. LOMI, 152, "Nauka", Leningrad. Otdel., Leningrad, 1986, 105–136
Linking options:
https://www.mathnet.ru/eng/znsl5123 https://www.mathnet.ru/eng/znsl/v152/p105
|
Statistics & downloads: |
Abstract page: | 86 | Full-text PDF : | 56 |
|