|
Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 152, Pages 94–104
(Mi znsl5122)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Asymptotics of the spectrum of pseudo-differential operator with periodic bicharacteristics
Yu. G. Safarov
Abstract:
Let $\lambda_j$ be the eigenvalues of positive elliptic pseudodifferential operator of order $m>0$ on compact closed $d$-dimentional $C^\infty$-manifold, $N(\lambda)=\sharp\{j:\lambda_j\leqslant\lambda^m\}$. It is shown that for each $\varepsilon>0$
\begin{gather*}
c_0(\lambda+\varepsilon)^d+c_1\lambda^{d-1}+Q(\lambda+\varepsilon)\lambda^{d-1}+o(\lambda^{d-1})\geqslant N(\lambda)\geqslant\\
\geqslant c_0(\lambda-\varepsilon)^d+c_1\lambda^{d-1}+Q(\lambda-\varepsilon)\lambda^{d-1}+o(\lambda^{d-1}),
\end{gather*}
where $c_0$ and $c_1$ are standard Weyl constants, $Q(\mu)$ is some bounded function on $\mathbb R^1$. The function $Q(\mu)$ describes the influence of periodic bicharacteristics on the asymptotics of $N(\lambda)$. Under assumption of simple reflection of bicharacteristics this result is valid for differential operators on compact manifold with boundary too.
Citation:
Yu. G. Safarov, “Asymptotics of the spectrum of pseudo-differential operator with periodic bicharacteristics”, Boundary-value problems of mathematical physics and related problems of function theory. Part 18, Zap. Nauchn. Sem. LOMI, 152, "Nauka", Leningrad. Otdel., Leningrad, 1986, 94–104
Linking options:
https://www.mathnet.ru/eng/znsl5122 https://www.mathnet.ru/eng/znsl/v152/p94
|
Statistics & downloads: |
Abstract page: | 127 | Full-text PDF : | 40 |
|