Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 152, Pages 94–104 (Mi znsl5122)  

This article is cited in 3 scientific papers (total in 3 papers)

Asymptotics of the spectrum of pseudo-differential operator with periodic bicharacteristics

Yu. G. Safarov
Full-text PDF (465 kB) Citations (3)
Abstract: Let $\lambda_j$ be the eigenvalues of positive elliptic pseudodifferential operator of order $m>0$ on compact closed $d$-dimentional $C^\infty$-manifold, $N(\lambda)=\sharp\{j:\lambda_j\leqslant\lambda^m\}$. It is shown that for each $\varepsilon>0$
\begin{gather*} c_0(\lambda+\varepsilon)^d+c_1\lambda^{d-1}+Q(\lambda+\varepsilon)\lambda^{d-1}+o(\lambda^{d-1})\geqslant N(\lambda)\geqslant\\ \geqslant c_0(\lambda-\varepsilon)^d+c_1\lambda^{d-1}+Q(\lambda-\varepsilon)\lambda^{d-1}+o(\lambda^{d-1}), \end{gather*}
where $c_0$ and $c_1$ are standard Weyl constants, $Q(\mu)$ is some bounded function on $\mathbb R^1$. The function $Q(\mu)$ describes the influence of periodic bicharacteristics on the asymptotics of $N(\lambda)$. Under assumption of simple reflection of bicharacteristics this result is valid for differential operators on compact manifold with boundary too.
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: Yu. G. Safarov, “Asymptotics of the spectrum of pseudo-differential operator with periodic bicharacteristics”, Boundary-value problems of mathematical physics and related problems of function theory. Part 18, Zap. Nauchn. Sem. LOMI, 152, "Nauka", Leningrad. Otdel., Leningrad, 1986, 94–104
Citation in format AMSBIB
\Bibitem{Saf86}
\by Yu.~G.~Safarov
\paper Asymptotics of the spectrum of pseudo-differential operator with periodic bicharacteristics
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~18
\serial Zap. Nauchn. Sem. LOMI
\yr 1986
\vol 152
\pages 94--104
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5122}
\zmath{https://zbmath.org/?q=an:0621.35071}
Linking options:
  • https://www.mathnet.ru/eng/znsl5122
  • https://www.mathnet.ru/eng/znsl/v152/p94
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:127
    Full-text PDF :40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024