|
Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 152, Pages 72–85
(Mi znsl5120)
|
|
|
|
This article is cited in 5 scientific papers (total in 6 papers)
On the attractors of nonlinear evolution problems
O. A. Ladyzhenskaya
Abstract:
She existence of a compact connected global attractor in the space $X=W_2^2(\Omega)\times W_2^1(\Omega)$ for the problem $u_{tt}+\varepsilon u_t-\Delta u+f(u)=h(x)$, $x\in\Omega\subset\mathbb R^3$, $u|_{\partial\Omega}=0$, with cubical growth
of $f(u)$ is prooved.
Citation:
O. A. Ladyzhenskaya, “On the attractors of nonlinear evolution problems”, Boundary-value problems of mathematical physics and related problems of function theory. Part 18, Zap. Nauchn. Sem. LOMI, 152, "Nauka", Leningrad. Otdel., Leningrad, 1986, 72–85
Linking options:
https://www.mathnet.ru/eng/znsl5120 https://www.mathnet.ru/eng/znsl/v152/p72
|
Statistics & downloads: |
Abstract page: | 203 | Full-text PDF : | 85 |
|