Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1992, Volume 201, Pages 164–176 (Mi znsl5112)  

Some consequences of the Lindelöf conjecture

N. A. Shirokov
Abstract: Suppose that the Lindelöf conjecture is valid in the following quantitative form:
$$ \left|\zeta\left(\frac12+it\right)\right|\leqslant c_0|t|^{\varepsilon(|t|)} $$
where $\varepsilon(t)$ is a decreasing function, $\varepsilon(2t)\geqslant\frac12\varepsilon(t)$, $\varepsilon(t)\geqslant\frac1{\sqrt{\log t}}$. Then it is proved that for $|t|\geqslant T_0$ the $disk\left\{s: \left|s-\frac12-it\right|\leqslant v\right\}$ contains at most $20v\log|t|$ zeros of $\zeta(s)$ if $\frac12\geqslant v\geqslant\sqrt{\varepsilon(t)}$. There exists an absolute constant $A$ such that for $|t|\geqslant T_1$ the $disk\left\{s: \left|s-\frac12-it\right|\leqslant A\varepsilon^{1/3}(t)\right\}$ contains at least one zero of $\zeta(s)$.
English version:
Journal of Mathematical Sciences, 1996, Volume 78, Issue 2, Pages 223–231
DOI: https://doi.org/10.1007/BF02366037
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: N. A. Shirokov, “Some consequences of the Lindelöf conjecture”, Investigations on linear operators and function theory. Part 20, Zap. Nauchn. Sem. POMI, 201, Nauka, St. Petersburg, 1992, 164–176; J. Math. Sci., 78:2 (1996), 223–231
Citation in format AMSBIB
\Bibitem{Shi92}
\by N.~A.~Shirokov
\paper Some consequences of the Lindel\"of conjecture
\inbook Investigations on linear operators and function theory. Part~20
\serial Zap. Nauchn. Sem. POMI
\yr 1992
\vol 201
\pages 164--176
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5112}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1172764}
\zmath{https://zbmath.org/?q=an:0839.11034|0804.11050}
\transl
\jour J. Math. Sci.
\yr 1996
\vol 78
\issue 2
\pages 223--231
\crossref{https://doi.org/10.1007/BF02366037}
Linking options:
  • https://www.mathnet.ru/eng/znsl5112
  • https://www.mathnet.ru/eng/znsl/v201/p164
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024