|
Zapiski Nauchnykh Seminarov POMI, 1992, Volume 201, Pages 164–176
(Mi znsl5112)
|
|
|
|
Some consequences of the Lindelöf conjecture
N. A. Shirokov
Abstract:
Suppose that the Lindelöf conjecture is valid in the following quantitative form:
$$
\left|\zeta\left(\frac12+it\right)\right|\leqslant c_0|t|^{\varepsilon(|t|)}
$$
where $\varepsilon(t)$ is a decreasing function, $\varepsilon(2t)\geqslant\frac12\varepsilon(t)$, $\varepsilon(t)\geqslant\frac1{\sqrt{\log t}}$. Then it is proved that for $|t|\geqslant T_0$ the $disk\left\{s: \left|s-\frac12-it\right|\leqslant v\right\}$ contains at most $20v\log|t|$ zeros of $\zeta(s)$ if $\frac12\geqslant v\geqslant\sqrt{\varepsilon(t)}$. There exists an absolute constant $A$ such that for $|t|\geqslant T_1$ the $disk\left\{s: \left|s-\frac12-it\right|\leqslant A\varepsilon^{1/3}(t)\right\}$ contains at least one zero of $\zeta(s)$.
Citation:
N. A. Shirokov, “Some consequences of the Lindelöf conjecture”, Investigations on linear operators and function theory. Part 20, Zap. Nauchn. Sem. POMI, 201, Nauka, St. Petersburg, 1992, 164–176; J. Math. Sci., 78:2 (1996), 223–231
Linking options:
https://www.mathnet.ru/eng/znsl5112 https://www.mathnet.ru/eng/znsl/v201/p164
|
Statistics & downloads: |
Abstract page: | 169 | Full-text PDF : | 60 |
|