Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1992, Volume 201, Pages 124–156 (Mi znsl5109)  

This article is cited in 17 scientific papers (total in 17 papers)

Estimates of capacities associated with Besov spaces

Y. V. Netrusov
Abstract: Let $X$ be the Besov space $BL_{p,\theta}^l(\mathrm{R}^n)$, $0<p<\infty$, $0<\theta\leqslant\infty$, $0<lp<n$. Let $\overline{\mathrm{cap}}(\cdot,X)$ be the capacity associated with the space $X$ (defined on subsets of $\mathrm{R}^n$) and $\varphi$ be a function defined on $[0,1]$ such that $\varphi(0)=0$, $\varphi(1)=1$ and for some $\varepsilon>0$ the functions $\varphi(t)t^{-\varepsilon}$, $t^{n-\varepsilon}/\varphi(t)$ increase.
DEFINITON. Let $A\subset\mathrm{R}^n$, $0<\beta<\infty$. Define
$$ h_{\varphi,\beta}(A)=\inf\left(\sum_{i=0}^{+\infty}(m_i\omega(2^{-i}))^\beta\right)^{1/\beta}, $$
where the infimum is taken over all coverings of $A$ by a countable number of balls, whose radii $r_j$ do not exceed 1, while $m_i$ is the number of balls from this covering whose radii $r_j$ belong the set $(2^{-i-1},2^{-i}]$, $i\in N_0$.
THEOREM 1. Let $p\leqslant1$, $\theta=\infty$, and let the function $\varphi(t)t^{lp-n}$ increase. Then the following condition are equivalent:
  • a) for any compact set $K$, $K\subset\mathrm{R}^n$, if $\overline{\mathrm{cap}}(K, X)=0$ then $h_{\varphi,\infty}(K)=0$.
  • b) $\sum\limits_{i=0}^\infty(\varphi(1/x_i)x_i^{n-lp})^{1/p}<+\infty$, $x_0=1$, $x_{i+1}=2^{x_i}$, $i\in N_0$.

THEOREM 2. Let $\theta<1$. Then for any set $A$ the inequalities $c_1\overline{\mathrm{cap}}(A,X)\leqslant h_{t^{n-lp},\theta/p}(A)\leqslant c_2\overline{\mathrm{cap}}(A,X)$ hold.
English version:
Journal of Mathematical Sciences, 1996, Volume 78, Issue 2, Pages 199–217
DOI: https://doi.org/10.1007/BF02366035
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: Y. V. Netrusov, “Estimates of capacities associated with Besov spaces”, Investigations on linear operators and function theory. Part 20, Zap. Nauchn. Sem. POMI, 201, Nauka, St. Petersburg, 1992, 124–156; J. Math. Sci., 78:2 (1996), 199–217
Citation in format AMSBIB
\Bibitem{Net92}
\by Y.~V.~Netrusov
\paper Estimates of capacities associated with Besov spaces
\inbook Investigations on linear operators and function theory. Part~20
\serial Zap. Nauchn. Sem. POMI
\yr 1992
\vol 201
\pages 124--156
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5109}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1172762}
\zmath{https://zbmath.org/?q=an:0839.46023|0835.46032}
\transl
\jour J. Math. Sci.
\yr 1996
\vol 78
\issue 2
\pages 199--217
\crossref{https://doi.org/10.1007/BF02366035}
Linking options:
  • https://www.mathnet.ru/eng/znsl5109
  • https://www.mathnet.ru/eng/znsl/v201/p124
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:181
    Full-text PDF :77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024