|
Zapiski Nauchnykh Seminarov POMI, 1992, Volume 201, Pages 5–21
(Mi znsl5105)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Kernels of Toeplitz operators, smooth functions, and Bernstein type inequalities
K. M. D'yakonov
Abstract:
Let $\varphi$ be a unimodular function on the unit circle $\mathbb{T}$ and
let $K_p(\varphi)$ denote the kernel of the Toeplitz operator $T_\varphi$
in the Hardy space $H^p$, $p\geqslant1: K_p(\varphi)\stackrel{\mathrm{def}}{=}\{f\in H^p: T_\varphi f=0\}$.
Suppose $K_p(\varphi)\ne\{0\}$. The problem is to find out how the smoothness
of the symbol $\varphi$ influences the boundary smoothness of
functions in $K_p(\varphi)$. One of the main results is as follows.
THEOREM 1. Let $1<p$, $q<+\infty$, $1<r\leqslant+\infty$, $q^{-1}=p^{-1}+r^{-1}$.
Suppose $||\varphi||\equiv1$ on $\mathbb{T}$ and $\varphi\in W_r^1$ (i.e. $\varphi'\in L^r(\mathbb{T})$).
Then $K_p(\varphi)\subset W_q^1$. Moreover, for any $\varphi\in K_p(\varphi)$ we have
$||f'||_q\leqslant c(p,r)||\varphi'||_r||f||_p$.
Citation:
K. M. D'yakonov, “Kernels of Toeplitz operators, smooth functions, and Bernstein type inequalities”, Investigations on linear operators and function theory. Part 20, Zap. Nauchn. Sem. POMI, 201, Nauka, St. Petersburg, 1992, 5–21; J. Math. Sci., 78:2 (1996), 131–141
Linking options:
https://www.mathnet.ru/eng/znsl5105 https://www.mathnet.ru/eng/znsl/v201/p5
|
Statistics & downloads: |
Abstract page: | 391 | Full-text PDF : | 94 |
|