Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1992, Volume 201, Pages 5–21 (Mi znsl5105)  

This article is cited in 6 scientific papers (total in 6 papers)

Kernels of Toeplitz operators, smooth functions, and Bernstein type inequalities

K. M. D'yakonov
Full-text PDF (713 kB) Citations (6)
Abstract: Let $\varphi$ be a unimodular function on the unit circle $\mathbb{T}$ and let $K_p(\varphi)$ denote the kernel of the Toeplitz operator $T_\varphi$ in the Hardy space $H^p$, $p\geqslant1: K_p(\varphi)\stackrel{\mathrm{def}}{=}\{f\in H^p: T_\varphi f=0\}$. Suppose $K_p(\varphi)\ne\{0\}$. The problem is to find out how the smoothness of the symbol $\varphi$ influences the boundary smoothness of functions in $K_p(\varphi)$. One of the main results is as follows.
THEOREM 1. Let $1<p$, $q<+\infty$, $1<r\leqslant+\infty$, $q^{-1}=p^{-1}+r^{-1}$. Suppose $||\varphi||\equiv1$ on $\mathbb{T}$ and $\varphi\in W_r^1$ (i.e. $\varphi'\in L^r(\mathbb{T})$). Then $K_p(\varphi)\subset W_q^1$. Moreover, for any $\varphi\in K_p(\varphi)$ we have $||f'||_q\leqslant c(p,r)||\varphi'||_r||f||_p$.
English version:
Journal of Mathematical Sciences, 1996, Volume 78, Issue 2, Pages 131–141
DOI: https://doi.org/10.1007/BF02366031
Bibliographic databases:
Document Type: Article
UDC: 517.537
Language: Russian
Citation: K. M. D'yakonov, “Kernels of Toeplitz operators, smooth functions, and Bernstein type inequalities”, Investigations on linear operators and function theory. Part 20, Zap. Nauchn. Sem. POMI, 201, Nauka, St. Petersburg, 1992, 5–21; J. Math. Sci., 78:2 (1996), 131–141
Citation in format AMSBIB
\Bibitem{Dya92}
\by K.~M.~D'yakonov
\paper Kernels of Toeplitz operators, smooth functions, and Bernstein type inequalities
\inbook Investigations on linear operators and function theory. Part~20
\serial Zap. Nauchn. Sem. POMI
\yr 1992
\vol 201
\pages 5--21
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1172758}
\zmath{https://zbmath.org/?q=an:0839.47017|0812.47020}
\transl
\jour J. Math. Sci.
\yr 1996
\vol 78
\issue 2
\pages 131--141
\crossref{https://doi.org/10.1007/BF02366031}
Linking options:
  • https://www.mathnet.ru/eng/znsl5105
  • https://www.mathnet.ru/eng/znsl/v201/p5
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:391
    Full-text PDF :94
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024