Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1992, Volume 200, Pages 132–138 (Mi znsl5099)  

This article is cited in 4 scientific papers (total in 4 papers)

Theorems about traces and multipliers for functions from Lizorkin–Triebel spaces

Y. V. Netrusov
Full-text PDF (309 kB) Citations (4)
Abstract: We briefly outline the results. In section 2 we formulate results about multipliers in Besov and Lizorkin–Triebel spaces. In theorems 1 and 2 a description of spaces of multipliers for $FL_{p,\theta}^l$, $l>0$, $0<p\leqslant1$, and $F_{p,\theta}^l$, $l\in\mathrm{R}$, $0<p\leqslant1$, $p\leqslant\theta\leqslant\infty$, ig given (recall that the description of spaces of multipliers for space $BL_{1,1}^l=FL_{1,1}^l$ has been obtained by V. G. Mazya (see [2])). In theorem 3 a description of multipliers in space $BL_{p,\infty}^l$, $l>0$, $0<p\leqslant1$ and some information about multipliers for spaces $B_{p,\infty}^l$, $l\in\mathrm{R}$, $0<p\leqslant1$, are given.
In section 3 we formulate two results about traces of functions from spaces of Lizorkin–Triebel type. In theorem 4 we give a discription of such subsets $A\subset\mathrm{R}^n$ that trace of space $FL_{p,\theta}^l$, $0<p\leqslant1$, $l>0$, on set $A$ is a quasibanach lattice. In theorem 5 we indicate a class of measures $\nu$ such that trace of space of Lizorkin–Triebel type on measure $\nu$ is the Lebesgue space $L_p(\nu)$, $0<p<\infty$. In particular, it follows from theorem 5 that trace of $W^l_{L_{p,1}}(\mathrm{R}^n)$ (Sobolev space in metric of Lorentz space $L_{p,1}$ on $m$-dimensional plane $\pi$ ($m\in \mathrm{N}$, $l=(n-m)/p\in \mathrm{N}$, $1<p<\infty$) is equal to $L_p(\mu_m)$, where $\mu_m$ is the Lebesgue measure on the plane $\pi$.
English version:
Journal of Mathematical Sciences, 1995, Volume 77, Issue 3, Pages 3221–3224
DOI: https://doi.org/10.1007/BF02364714
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: Y. V. Netrusov, “Theorems about traces and multipliers for functions from Lizorkin–Triebel spaces”, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Zap. Nauchn. Sem. POMI, 200, Nauka, St. Petersburg, 1992, 132–138; J. Math. Sci., 77:3 (1995), 3221–3224
Citation in format AMSBIB
\Bibitem{Net92}
\by Y.~V.~Netrusov
\paper Theorems about traces and multipliers for functions from Lizorkin--Triebel spaces
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~24
\serial Zap. Nauchn. Sem. POMI
\yr 1992
\vol 200
\pages 132--138
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5099}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1192120}
\zmath{https://zbmath.org/?q=an:0836.46018|0810.46028}
\transl
\jour J. Math. Sci.
\yr 1995
\vol 77
\issue 3
\pages 3221--3224
\crossref{https://doi.org/10.1007/BF02364714}
Linking options:
  • https://www.mathnet.ru/eng/znsl5099
  • https://www.mathnet.ru/eng/znsl/v200/p132
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:150
    Full-text PDF :62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024