|
Zapiski Nauchnykh Seminarov POMI, 1992, Volume 200, Pages 51–61
(Mi znsl5091)
|
|
|
|
Some relations between the analytical modular forms and Maass waveforms for $PSL(2,\mathbb{Z})$
A. B. Venkov
Abstract:
The main goal of this paper is to prove that any even
Maass cusp waveform $f$ up to a finite dimensional subspace
is represented by some special series
$$
f(z,\overline{z})=c+\sum_{k=2}^\infty a(k_1,k_2,k_3,m_1,m_2,m_3)y^k R^{k_1}(z)Q^{k_2}(z)S^{k_3}\overline{(z,\overline{z})R^{m_1}(z)Q^{m_2}(z)S^{m_3}(z,\overline{z})}\qquad{(1)}
$$
where $6k_1+4k_2+2k_3=k=6m_1+4m_2+2m_3$ and $R(z)=E_6(z)$, $Q(z)=E_4(z)$,
$S(z,\overline{z})+3/\pi y=E_2(z)$ are the analytical Eisenstein series,
$c$, $a(k_1,k_2,k_3,m_1,m_2,m_3)$ are complex coefficients. The same representation (1)
is true for any element $f\in\mathcal{H}$, $f(z)=f(-\overline{z})$, $z\in H$ the upper
half plane, $\mathcal{H}=L_2(PSL(2,\mathbb{Z})\setminus H)$, up to a finite dimensional subspace,
which may be ia trivial (see Theorem 2 and Remark in the end of the paper).
Citation:
A. B. Venkov, “Some relations between the analytical modular forms and Maass waveforms for $PSL(2,\mathbb{Z})$”, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Zap. Nauchn. Sem. POMI, 200, Nauka, St. Petersburg, 1992, 51–61; J. Math. Sci., 77:3 (1995), 3170–3177
Linking options:
https://www.mathnet.ru/eng/znsl5091 https://www.mathnet.ru/eng/znsl/v200/p51
|
Statistics & downloads: |
Abstract page: | 114 | Full-text PDF : | 37 |
|