Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1992, Volume 200, Pages 51–61 (Mi znsl5091)  

Some relations between the analytical modular forms and Maass waveforms for $PSL(2,\mathbb{Z})$

A. B. Venkov
Abstract: The main goal of this paper is to prove that any even Maass cusp waveform $f$ up to a finite dimensional subspace is represented by some special series
$$ f(z,\overline{z})=c+\sum_{k=2}^\infty a(k_1,k_2,k_3,m_1,m_2,m_3)y^k R^{k_1}(z)Q^{k_2}(z)S^{k_3}\overline{(z,\overline{z})R^{m_1}(z)Q^{m_2}(z)S^{m_3}(z,\overline{z})}\qquad{(1)} $$
where $6k_1+4k_2+2k_3=k=6m_1+4m_2+2m_3$ and $R(z)=E_6(z)$, $Q(z)=E_4(z)$, $S(z,\overline{z})+3/\pi y=E_2(z)$ are the analytical Eisenstein series, $c$, $a(k_1,k_2,k_3,m_1,m_2,m_3)$ are complex coefficients. The same representation (1) is true for any element $f\in\mathcal{H}$, $f(z)=f(-\overline{z})$, $z\in H$ the upper half plane, $\mathcal{H}=L_2(PSL(2,\mathbb{Z})\setminus H)$, up to a finite dimensional subspace, which may be ia trivial (see Theorem 2 and Remark in the end of the paper).
English version:
Journal of Mathematical Sciences, 1995, Volume 77, Issue 3, Pages 3170–3177
DOI: https://doi.org/10.1007/BF02364706
Bibliographic databases:
Document Type: Article
UDC: 513.5
Language: English
Citation: A. B. Venkov, “Some relations between the analytical modular forms and Maass waveforms for $PSL(2,\mathbb{Z})$”, Boundary-value problems of mathematical physics and related problems of function theory. Part 24, Zap. Nauchn. Sem. POMI, 200, Nauka, St. Petersburg, 1992, 51–61; J. Math. Sci., 77:3 (1995), 3170–3177
Citation in format AMSBIB
\Bibitem{Ven92}
\by A.~B.~Venkov
\paper Some relations between the analytical modular forms and Maass waveforms for $PSL(2,\mathbb{Z})$
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~24
\serial Zap. Nauchn. Sem. POMI
\yr 1992
\vol 200
\pages 51--61
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5091}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1192112}
\zmath{https://zbmath.org/?q=an:0836.11016|0814.11028}
\transl
\jour J. Math. Sci.
\yr 1995
\vol 77
\issue 3
\pages 3170--3177
\crossref{https://doi.org/10.1007/BF02364706}
Linking options:
  • https://www.mathnet.ru/eng/znsl5091
  • https://www.mathnet.ru/eng/znsl/v200/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:114
    Full-text PDF :37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024