Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1992, Volume 199, Pages 91–113 (Mi znsl5082)  

This article is cited in 2 scientific papers (total in 2 papers)

Nonlocal problems for some class nonlinear dissipative Sobolev type equations

A. A. Kotsiolis, A. P. Oskolkov, R. D. Shadiev
Abstract: Let $H_i$, $i=0,1,2,3$ are Hilbert spaces:
$$ H_3\subset H_2\subset H_1\subset H_0, \qquad{(1)} $$
and imbeddings are compact. Consider in $H_2$ nonlinear abstract equation
$$ \frac{du}{dt}=Au+K(u)+F(t),\quad t\in\mathbb{R}^+, \qquad{(7)} $$
and suppose that for operators $A$ and $K(u)$ and external force $F(t)$ the assumptions (8)–(12) are fulfilled.
In the paper two nonlocal problems for the equation (7)–(12) are studied:
  • 1. Existence in the large on the semiaxis $\mathbb{R}^+$ solution of the Cauchy problem (7)–(12) for distinct assumptions about external force $F(t): F(t)\in L_\infty(\mathbb{R}^+;H_2)$, $F(t)\in L_2(\mathbb{R}^+;H_2)$, $F(t)\in S_2(\mathbb{R}^+;H_2)$ (see Theorems 1–3).
  • 2. Existence in the large time-periodic solutions of the equation (7)–(11), (15) with time-periodic external force $F(t)\in\tilde{L}_{2,\omega}(\mathbb{R}^+;H_2)$ and $F(t)\in\tilde{L}_{\infty,\omega}(\mathbb{R}^+;H_2)$ (see Theorems 6–7)
The examples of nonlinear dissipative Sobolev type equations (2)–(6) which are reduced to the abstract nonlinear equation (7)–(11) are given:
    \item[] equations of the motion of the Kelvin–Voight fluids (50) (see Theorems 8–9), \item[] equations of the motion of the Kelvin–Voight fluids order $L=1,2,\dots$ (97) and (99), \item[] the system of the “Oskolkov equations” (90), (91), \item[] similinear pseudoparabolic equations (76) with $p\leqslant3$ and (85), (86) (see Theorems 10–11).
English version:
Journal of Mathematical Sciences, 1995, Volume 77, Issue 2, Pages 3076–3089
DOI: https://doi.org/10.1007/BF02367235
Bibliographic databases:
Document Type: Article
UDC: 517.94
Language: Russian
Citation: A. A. Kotsiolis, A. P. Oskolkov, R. D. Shadiev, “Nonlocal problems for some class nonlinear dissipative Sobolev type equations”, Questions of quantum field theory and statistical physics. Part 11, Zap. Nauchn. Sem. POMI, 199, Nauka, St. Petersburg, 1992, 91–113; J. Math. Sci., 77:2 (1995), 3076–3089
Citation in format AMSBIB
\Bibitem{CotOskSha92}
\by A.~A.~Kotsiolis, A.~P.~Oskolkov, R.~D.~Shadiev
\paper Nonlocal problems for some class nonlinear dissipative Sobolev type equations
\inbook Questions of quantum field theory and statistical physics. Part~11
\serial Zap. Nauchn. Sem. POMI
\yr 1992
\vol 199
\pages 91--113
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5082}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1168675}
\zmath{https://zbmath.org/?q=an:0936.35099}
\transl
\jour J. Math. Sci.
\yr 1995
\vol 77
\issue 2
\pages 3076--3089
\crossref{https://doi.org/10.1007/BF02367235}
Linking options:
  • https://www.mathnet.ru/eng/znsl5082
  • https://www.mathnet.ru/eng/znsl/v199/p91
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:167
    Full-text PDF :75
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024