Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1991, Volume 198, Pages 31–48 (Mi znsl5069)  

This article is cited in 38 scientific papers (total in 38 papers)

Nonlocal problems for some class nonlinear operator equations arising in the theory Sobolev type equations

A. P. Oskolkov
Abstract: Let $H_i$, $i=0, 1, 2, 3$, are Hilbert spaces:
$$ H_3\subset H_2\subset H_1\subset H_0, \qquad{(1)} $$
and imbeddings are compact. Consider in $H_2$ nonlinear abstract equation
$$ \frac{du}{dt}=Au+K(u)+F(t),\quad t\in\mathbb{R}^+,\qquad{(7)} $$
and for operators $A$ and $K(u)$ and external force $F(t)$ the following assumptions are satisfies:
  • 1) $A$ is linear bounded negative definite operator from $H_2$ onto $H_2$:
    $$ ||A||\leqslant c_4,\quad (Au,u)_{H_2}\leqslant-\gamma||u||^2_{H_2},\quad\gamma>0,\qquad{(8)} $$
  • 2) $K(u)$ is nonlinear operator acting from $H_2$ into $H_3$, and
    \begin{gather*} (K(u),u)_{H_2}\leqslant\varepsilon||u||^2_{H_2}\cdot||u||^\alpha_{H_1}+c_\varepsilon||u||^{1+\beta}_{H_1},\quad\forall\varepsilon>0,\ \alpha,\beta>0,\tag{9}\\ ||K(u)||_{H_3}\leqslant c_s||u||^{1+\alpha}_{H_2},\quad\forall u\in H_2,\tag{10}\\ ||K(u^1)-K(u^2)||_{H_2}\leqslant c_6(||u^i||_{H_2})||u^1-u^2||_{H_2};\tag{11} \end{gather*}
  • 3) $F(t)\in H_2$, $\forall t\in\mathbb{R}^+$.
In the paper four nonlocal problems for the equation (7)–(11) are studied:
  • 1) Existence in the large on the semiaxis $\mathbb{R}^+$ solution of the Cauchy problem (7)–(12) for distinct assumptions about external force $F(t): F(t)\in L_\infty(\mathbb{R}^+; H_2)$, $F(t)\in L_2(\mathbb{R}^+; H_2)$, $F(t)\in S_2(\mathbb{R}^+; H_2)$ (see Theorems 1–3).
  • 2) Existence in the large on the axis $\mathbb{R}\equiv(-\infty,\infty)$ of solution of the equation (7)–(11) for the same conditions on the external force $F(t)$ which are supposed in the 1) (see Theorems 4–6);
  • 3) Existence in the large time-periodic solutions of the equation (7)–(11), (15) with time-periodic external force $F(t)\in \tilde{L}_{2,\omega}(\mathbb{R}^+;H_2)$ and $F(t)\in \tilde{L}_{\infty,\omega}(\mathbb{R}^+;H_2)$ (see Theorems 7–8).
  • 4) Existence in the small of almost-periodic solution of the equation (7)–(11) with almost-periodic external force $F(t)$ (see Theorems 9–11).
The examples of nonlinear dissipative Sobolev type equations (2)–(6) which are reduced to the abstract nonlinear equation (7)–(11) are given: equations of the motion of the Kelvin–Voight fluids (0.1), equations of the motion of the Kelvin–Voight fluids order $L=1,2,\dots$ (62) and (63), the system of the “Oskolkov equations” (64), semilinear pseudoparabolic equations (65) with $p\leqslant3$.
English version:
Journal of Soviet Mathematics, 1993, Volume 64, Issue 1, Pages 724–736
DOI: https://doi.org/10.1007/BF02988478
Bibliographic databases:
Document Type: Article
UDC: 517.94
Language: Russian
Citation: A. P. Oskolkov, “Nonlocal problems for some class nonlinear operator equations arising in the theory Sobolev type equations”, Problems in the theory of representations of algebras and groups. Part 2, Zap. Nauchn. Sem. LOMI, 198, Nauka, St. Petersburg, 1991, 31–48; J. Soviet Math., 64:1 (1993), 724–736
Citation in format AMSBIB
\Bibitem{Osk91}
\by A.~P.~Oskolkov
\paper Nonlocal problems for some class nonlinear operator equations arising in the theory Sobolev type equations
\inbook Problems in the theory of representations of algebras and groups. Part~2
\serial Zap. Nauchn. Sem. LOMI
\yr 1991
\vol 198
\pages 31--48
\publ Nauka
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5069}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1164858}
\zmath{https://zbmath.org/?q=an:0808.34068}
\transl
\jour J. Soviet Math.
\yr 1993
\vol 64
\issue 1
\pages 724--736
\crossref{https://doi.org/10.1007/BF02988478}
Linking options:
  • https://www.mathnet.ru/eng/znsl5069
  • https://www.mathnet.ru/eng/znsl/v198/p31
  • This publication is cited in the following 38 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:239
    Full-text PDF :145
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024