Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1986, Volume 151, Pages 125–134 (Mi znsl5052)  

On the theory of the reduction of positive quadratic forms. Abnormality of the partition of the positivity cone into the Minkowski $(n\geqslant7)$ and Barns–Cohn reduction regions $(n=4)$.

P. P. Tammela
Document Type: Article
UDC: 511.9+511.512
Language: Russian
Citation: P. P. Tammela, “On the theory of the reduction of positive quadratic forms. Abnormality of the partition of the positivity cone into the Minkowski $(n\geqslant7)$ and Barns–Cohn reduction regions $(n=4)$.”, Studies in number theory. Part 9, Zap. Nauchn. Sem. LOMI, 151, "Nauka", Leningrad. Otdel., Leningrad, 1986, 125–134
Citation in format AMSBIB
\Bibitem{Tam86}
\by P.~P.~Tammela
\paper On the theory of the reduction of positive quadratic forms. Abnormality of the partition of the positivity cone into the Minkowski $(n\geqslant7)$ and Barns--Cohn reduction regions $(n=4)$.
\inbook Studies in number theory. Part~9
\serial Zap. Nauchn. Sem. LOMI
\yr 1986
\vol 151
\pages 125--134
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5052}
Linking options:
  • https://www.mathnet.ru/eng/znsl5052
  • https://www.mathnet.ru/eng/znsl/v151/p125
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:116
    Full-text PDF :37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024